Properties

Label 2028.2.b.e.337.3
Level $2028$
Weight $2$
Character 2028.337
Analytic conductor $16.194$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(337,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-43})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} - 11x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(3.08945 + 1.20635i\) of defining polynomial
Character \(\chi\) \(=\) 2028.337
Dual form 2028.2.b.e.337.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.41269i q^{5} -4.14474i q^{7} +1.00000 q^{9} -3.46410i q^{11} +2.41269i q^{15} -6.17891 q^{17} -3.46410i q^{19} -4.14474i q^{21} -2.00000 q^{23} -0.821092 q^{25} +1.00000 q^{27} -8.17891 q^{29} -7.60885i q^{31} -3.46410i q^{33} +10.0000 q^{35} -1.05141i q^{37} -5.87680i q^{41} -0.821092 q^{43} +2.41269i q^{45} +10.3923i q^{47} -10.1789 q^{49} -6.17891 q^{51} -10.1789 q^{53} +8.35782 q^{55} -3.46410i q^{57} +1.36129i q^{59} +5.00000 q^{61} -4.14474i q^{63} -4.14474i q^{67} -2.00000 q^{69} -3.46410i q^{71} +11.3828i q^{73} -0.821092 q^{75} -14.3578 q^{77} +13.1789 q^{79} +1.00000 q^{81} -11.7536i q^{83} -14.9078i q^{85} -8.17891 q^{87} -6.92820i q^{89} -7.60885i q^{93} +8.35782 q^{95} -2.04193i q^{97} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} - 2 q^{17} - 8 q^{23} - 26 q^{25} + 4 q^{27} - 10 q^{29} + 40 q^{35} - 26 q^{43} - 18 q^{49} - 2 q^{51} - 18 q^{53} - 12 q^{55} + 20 q^{61} - 8 q^{69} - 26 q^{75} - 12 q^{77} + 30 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.41269i 1.07899i 0.841989 + 0.539495i \(0.181385\pi\)
−0.841989 + 0.539495i \(0.818615\pi\)
\(6\) 0 0
\(7\) − 4.14474i − 1.56657i −0.621665 0.783283i \(-0.713544\pi\)
0.621665 0.783283i \(-0.286456\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 3.46410i − 1.04447i −0.852803 0.522233i \(-0.825099\pi\)
0.852803 0.522233i \(-0.174901\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.41269i 0.622955i
\(16\) 0 0
\(17\) −6.17891 −1.49861 −0.749303 0.662228i \(-0.769611\pi\)
−0.749303 + 0.662228i \(0.769611\pi\)
\(18\) 0 0
\(19\) − 3.46410i − 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) − 4.14474i − 0.904457i
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −0.821092 −0.164218
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.17891 −1.51879 −0.759393 0.650633i \(-0.774504\pi\)
−0.759393 + 0.650633i \(0.774504\pi\)
\(30\) 0 0
\(31\) − 7.60885i − 1.36659i −0.730143 0.683295i \(-0.760546\pi\)
0.730143 0.683295i \(-0.239454\pi\)
\(32\) 0 0
\(33\) − 3.46410i − 0.603023i
\(34\) 0 0
\(35\) 10.0000 1.69031
\(36\) 0 0
\(37\) − 1.05141i − 0.172850i −0.996258 0.0864252i \(-0.972456\pi\)
0.996258 0.0864252i \(-0.0275444\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.87680i − 0.917801i −0.888488 0.458901i \(-0.848243\pi\)
0.888488 0.458901i \(-0.151757\pi\)
\(42\) 0 0
\(43\) −0.821092 −0.125215 −0.0626077 0.998038i \(-0.519942\pi\)
−0.0626077 + 0.998038i \(0.519942\pi\)
\(44\) 0 0
\(45\) 2.41269i 0.359663i
\(46\) 0 0
\(47\) 10.3923i 1.51587i 0.652328 + 0.757937i \(0.273792\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) −10.1789 −1.45413
\(50\) 0 0
\(51\) −6.17891 −0.865220
\(52\) 0 0
\(53\) −10.1789 −1.39818 −0.699090 0.715033i \(-0.746411\pi\)
−0.699090 + 0.715033i \(0.746411\pi\)
\(54\) 0 0
\(55\) 8.35782 1.12697
\(56\) 0 0
\(57\) − 3.46410i − 0.458831i
\(58\) 0 0
\(59\) 1.36129i 0.177224i 0.996066 + 0.0886122i \(0.0282432\pi\)
−0.996066 + 0.0886122i \(0.971757\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) − 4.14474i − 0.522189i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.14474i − 0.506361i −0.967419 0.253181i \(-0.918523\pi\)
0.967419 0.253181i \(-0.0814767\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) − 3.46410i − 0.411113i −0.978645 0.205557i \(-0.934100\pi\)
0.978645 0.205557i \(-0.0659005\pi\)
\(72\) 0 0
\(73\) 11.3828i 1.33226i 0.745836 + 0.666130i \(0.232050\pi\)
−0.745836 + 0.666130i \(0.767950\pi\)
\(74\) 0 0
\(75\) −0.821092 −0.0948115
\(76\) 0 0
\(77\) −14.3578 −1.63623
\(78\) 0 0
\(79\) 13.1789 1.48274 0.741372 0.671095i \(-0.234176\pi\)
0.741372 + 0.671095i \(0.234176\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 11.7536i − 1.29012i −0.764130 0.645062i \(-0.776831\pi\)
0.764130 0.645062i \(-0.223169\pi\)
\(84\) 0 0
\(85\) − 14.9078i − 1.61698i
\(86\) 0 0
\(87\) −8.17891 −0.876871
\(88\) 0 0
\(89\) − 6.92820i − 0.734388i −0.930144 0.367194i \(-0.880318\pi\)
0.930144 0.367194i \(-0.119682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 7.60885i − 0.789001i
\(94\) 0 0
\(95\) 8.35782 0.857494
\(96\) 0 0
\(97\) − 2.04193i − 0.207326i −0.994612 0.103663i \(-0.966944\pi\)
0.994612 0.103663i \(-0.0330564\pi\)
\(98\) 0 0
\(99\) − 3.46410i − 0.348155i
\(100\) 0 0
\(101\) 12.1789 1.21185 0.605923 0.795523i \(-0.292804\pi\)
0.605923 + 0.795523i \(0.292804\pi\)
\(102\) 0 0
\(103\) 3.17891 0.313227 0.156614 0.987660i \(-0.449942\pi\)
0.156614 + 0.987660i \(0.449942\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) − 7.60885i − 0.728795i −0.931243 0.364398i \(-0.881275\pi\)
0.931243 0.364398i \(-0.118725\pi\)
\(110\) 0 0
\(111\) − 1.05141i − 0.0997952i
\(112\) 0 0
\(113\) 12.1789 1.14570 0.572848 0.819662i \(-0.305839\pi\)
0.572848 + 0.819662i \(0.305839\pi\)
\(114\) 0 0
\(115\) − 4.82539i − 0.449970i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 25.6100i 2.34766i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) − 5.87680i − 0.529893i
\(124\) 0 0
\(125\) 10.0824i 0.901800i
\(126\) 0 0
\(127\) −2.82109 −0.250331 −0.125166 0.992136i \(-0.539946\pi\)
−0.125166 + 0.992136i \(0.539946\pi\)
\(128\) 0 0
\(129\) −0.821092 −0.0722931
\(130\) 0 0
\(131\) 6.35782 0.555485 0.277743 0.960656i \(-0.410414\pi\)
0.277743 + 0.960656i \(0.410414\pi\)
\(132\) 0 0
\(133\) −14.3578 −1.24498
\(134\) 0 0
\(135\) 2.41269i 0.207652i
\(136\) 0 0
\(137\) − 12.8050i − 1.09400i −0.837131 0.547002i \(-0.815769\pi\)
0.837131 0.547002i \(-0.184231\pi\)
\(138\) 0 0
\(139\) 17.1789 1.45710 0.728548 0.684995i \(-0.240196\pi\)
0.728548 + 0.684995i \(0.240196\pi\)
\(140\) 0 0
\(141\) 10.3923i 0.875190i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 19.7332i − 1.63875i
\(146\) 0 0
\(147\) −10.1789 −0.839542
\(148\) 0 0
\(149\) 5.87680i 0.481446i 0.970594 + 0.240723i \(0.0773845\pi\)
−0.970594 + 0.240723i \(0.922615\pi\)
\(150\) 0 0
\(151\) − 20.0431i − 1.63108i −0.578699 0.815541i \(-0.696439\pi\)
0.578699 0.815541i \(-0.303561\pi\)
\(152\) 0 0
\(153\) −6.17891 −0.499535
\(154\) 0 0
\(155\) 18.3578 1.47454
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) −10.1789 −0.807240
\(160\) 0 0
\(161\) 8.28949i 0.653303i
\(162\) 0 0
\(163\) − 7.60885i − 0.595971i −0.954570 0.297985i \(-0.903685\pi\)
0.954570 0.297985i \(-0.0963147\pi\)
\(164\) 0 0
\(165\) 8.35782 0.650655
\(166\) 0 0
\(167\) − 6.92820i − 0.536120i −0.963402 0.268060i \(-0.913617\pi\)
0.963402 0.268060i \(-0.0863826\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 3.46410i − 0.264906i
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 3.40322i 0.257259i
\(176\) 0 0
\(177\) 1.36129i 0.102321i
\(178\) 0 0
\(179\) −8.35782 −0.624693 −0.312346 0.949968i \(-0.601115\pi\)
−0.312346 + 0.949968i \(0.601115\pi\)
\(180\) 0 0
\(181\) −20.5367 −1.52648 −0.763241 0.646113i \(-0.776393\pi\)
−0.763241 + 0.646113i \(0.776393\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) 2.53673 0.186504
\(186\) 0 0
\(187\) 21.4044i 1.56524i
\(188\) 0 0
\(189\) − 4.14474i − 0.301486i
\(190\) 0 0
\(191\) −2.35782 −0.170606 −0.0853028 0.996355i \(-0.527186\pi\)
−0.0853028 + 0.996355i \(0.527186\pi\)
\(192\) 0 0
\(193\) 13.4856i 0.970718i 0.874315 + 0.485359i \(0.161311\pi\)
−0.874315 + 0.485359i \(0.838689\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.65078i 0.687589i 0.939045 + 0.343795i \(0.111712\pi\)
−0.939045 + 0.343795i \(0.888288\pi\)
\(198\) 0 0
\(199\) −21.5367 −1.52670 −0.763349 0.645986i \(-0.776446\pi\)
−0.763349 + 0.645986i \(0.776446\pi\)
\(200\) 0 0
\(201\) − 4.14474i − 0.292348i
\(202\) 0 0
\(203\) 33.8995i 2.37928i
\(204\) 0 0
\(205\) 14.1789 0.990298
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −15.5367 −1.06959 −0.534796 0.844981i \(-0.679612\pi\)
−0.534796 + 0.844981i \(0.679612\pi\)
\(212\) 0 0
\(213\) − 3.46410i − 0.237356i
\(214\) 0 0
\(215\) − 1.98104i − 0.135106i
\(216\) 0 0
\(217\) −31.5367 −2.14085
\(218\) 0 0
\(219\) 11.3828i 0.769180i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 15.2177i 1.01905i 0.860455 + 0.509526i \(0.170179\pi\)
−0.860455 + 0.509526i \(0.829821\pi\)
\(224\) 0 0
\(225\) −0.821092 −0.0547394
\(226\) 0 0
\(227\) 9.03102i 0.599410i 0.954032 + 0.299705i \(0.0968882\pi\)
−0.954032 + 0.299705i \(0.903112\pi\)
\(228\) 0 0
\(229\) − 9.65078i − 0.637741i −0.947798 0.318871i \(-0.896696\pi\)
0.947798 0.318871i \(-0.103304\pi\)
\(230\) 0 0
\(231\) −14.3578 −0.944675
\(232\) 0 0
\(233\) 22.7156 1.48815 0.744075 0.668096i \(-0.232890\pi\)
0.744075 + 0.668096i \(0.232890\pi\)
\(234\) 0 0
\(235\) −25.0735 −1.63561
\(236\) 0 0
\(237\) 13.1789 0.856062
\(238\) 0 0
\(239\) 2.10282i 0.136020i 0.997685 + 0.0680099i \(0.0216650\pi\)
−0.997685 + 0.0680099i \(0.978335\pi\)
\(240\) 0 0
\(241\) 5.87680i 0.378558i 0.981923 + 0.189279i \(0.0606150\pi\)
−0.981923 + 0.189279i \(0.939385\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) − 24.5586i − 1.56899i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 11.7536i − 0.744854i
\(250\) 0 0
\(251\) −20.7156 −1.30756 −0.653780 0.756685i \(-0.726818\pi\)
−0.653780 + 0.756685i \(0.726818\pi\)
\(252\) 0 0
\(253\) 6.92820i 0.435572i
\(254\) 0 0
\(255\) − 14.9078i − 0.933564i
\(256\) 0 0
\(257\) 22.1789 1.38348 0.691741 0.722146i \(-0.256844\pi\)
0.691741 + 0.722146i \(0.256844\pi\)
\(258\) 0 0
\(259\) −4.35782 −0.270782
\(260\) 0 0
\(261\) −8.17891 −0.506262
\(262\) 0 0
\(263\) 32.3578 1.99527 0.997634 0.0687455i \(-0.0218997\pi\)
0.997634 + 0.0687455i \(0.0218997\pi\)
\(264\) 0 0
\(265\) − 24.5586i − 1.50862i
\(266\) 0 0
\(267\) − 6.92820i − 0.423999i
\(268\) 0 0
\(269\) −12.3578 −0.753469 −0.376735 0.926321i \(-0.622953\pi\)
−0.376735 + 0.926321i \(0.622953\pi\)
\(270\) 0 0
\(271\) 14.5370i 0.883063i 0.897246 + 0.441531i \(0.145565\pi\)
−0.897246 + 0.441531i \(0.854435\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.84434i 0.171520i
\(276\) 0 0
\(277\) −0.178908 −0.0107496 −0.00537478 0.999986i \(-0.501711\pi\)
−0.00537478 + 0.999986i \(0.501711\pi\)
\(278\) 0 0
\(279\) − 7.60885i − 0.455530i
\(280\) 0 0
\(281\) − 11.4437i − 0.682675i −0.939941 0.341337i \(-0.889120\pi\)
0.939941 0.341337i \(-0.110880\pi\)
\(282\) 0 0
\(283\) −27.1789 −1.61562 −0.807809 0.589444i \(-0.799347\pi\)
−0.807809 + 0.589444i \(0.799347\pi\)
\(284\) 0 0
\(285\) 8.35782 0.495074
\(286\) 0 0
\(287\) −24.3578 −1.43780
\(288\) 0 0
\(289\) 21.1789 1.24582
\(290\) 0 0
\(291\) − 2.04193i − 0.119700i
\(292\) 0 0
\(293\) 32.8481i 1.91901i 0.281700 + 0.959503i \(0.409102\pi\)
−0.281700 + 0.959503i \(0.590898\pi\)
\(294\) 0 0
\(295\) −3.28437 −0.191223
\(296\) 0 0
\(297\) − 3.46410i − 0.201008i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.40322i 0.196158i
\(302\) 0 0
\(303\) 12.1789 0.699660
\(304\) 0 0
\(305\) 12.0635i 0.690752i
\(306\) 0 0
\(307\) − 11.0729i − 0.631967i −0.948765 0.315983i \(-0.897666\pi\)
0.948765 0.315983i \(-0.102334\pi\)
\(308\) 0 0
\(309\) 3.17891 0.180842
\(310\) 0 0
\(311\) 11.6422 0.660168 0.330084 0.943952i \(-0.392923\pi\)
0.330084 + 0.943952i \(0.392923\pi\)
\(312\) 0 0
\(313\) 27.8945 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) − 3.77398i − 0.211968i −0.994368 0.105984i \(-0.966201\pi\)
0.994368 0.105984i \(-0.0337992\pi\)
\(318\) 0 0
\(319\) 28.3326i 1.58632i
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) 21.4044i 1.19097i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 7.60885i − 0.420770i
\(328\) 0 0
\(329\) 43.0735 2.37472
\(330\) 0 0
\(331\) − 20.1040i − 1.10501i −0.833508 0.552507i \(-0.813671\pi\)
0.833508 0.552507i \(-0.186329\pi\)
\(332\) 0 0
\(333\) − 1.05141i − 0.0576168i
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −25.3578 −1.38133 −0.690664 0.723176i \(-0.742682\pi\)
−0.690664 + 0.723176i \(0.742682\pi\)
\(338\) 0 0
\(339\) 12.1789 0.661468
\(340\) 0 0
\(341\) −26.3578 −1.42736
\(342\) 0 0
\(343\) 13.1758i 0.711424i
\(344\) 0 0
\(345\) − 4.82539i − 0.259790i
\(346\) 0 0
\(347\) 20.3578 1.09286 0.546432 0.837503i \(-0.315986\pi\)
0.546432 + 0.837503i \(0.315986\pi\)
\(348\) 0 0
\(349\) − 10.3314i − 0.553028i −0.961010 0.276514i \(-0.910821\pi\)
0.961010 0.276514i \(-0.0891792\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 18.9917i − 1.01082i −0.862878 0.505412i \(-0.831340\pi\)
0.862878 0.505412i \(-0.168660\pi\)
\(354\) 0 0
\(355\) 8.35782 0.443587
\(356\) 0 0
\(357\) 25.6100i 1.35542i
\(358\) 0 0
\(359\) 18.6818i 0.985987i 0.870033 + 0.492994i \(0.164097\pi\)
−0.870033 + 0.492994i \(0.835903\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 0 0
\(365\) −27.4633 −1.43749
\(366\) 0 0
\(367\) 12.8211 0.669256 0.334628 0.942350i \(-0.391389\pi\)
0.334628 + 0.942350i \(0.391389\pi\)
\(368\) 0 0
\(369\) − 5.87680i − 0.305934i
\(370\) 0 0
\(371\) 42.1890i 2.19034i
\(372\) 0 0
\(373\) −11.3578 −0.588085 −0.294043 0.955792i \(-0.595001\pi\)
−0.294043 + 0.955792i \(0.595001\pi\)
\(374\) 0 0
\(375\) 10.0824i 0.520654i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6.24756i 0.320916i 0.987043 + 0.160458i \(0.0512971\pi\)
−0.987043 + 0.160458i \(0.948703\pi\)
\(380\) 0 0
\(381\) −2.82109 −0.144529
\(382\) 0 0
\(383\) − 19.3016i − 0.986263i −0.869955 0.493132i \(-0.835852\pi\)
0.869955 0.493132i \(-0.164148\pi\)
\(384\) 0 0
\(385\) − 34.6410i − 1.76547i
\(386\) 0 0
\(387\) −0.821092 −0.0417384
\(388\) 0 0
\(389\) −6.53673 −0.331425 −0.165713 0.986174i \(-0.552992\pi\)
−0.165713 + 0.986174i \(0.552992\pi\)
\(390\) 0 0
\(391\) 12.3578 0.624962
\(392\) 0 0
\(393\) 6.35782 0.320709
\(394\) 0 0
\(395\) 31.7967i 1.59986i
\(396\) 0 0
\(397\) 21.4653i 1.07731i 0.842526 + 0.538655i \(0.181067\pi\)
−0.842526 + 0.538655i \(0.818933\pi\)
\(398\) 0 0
\(399\) −14.3578 −0.718790
\(400\) 0 0
\(401\) − 10.7022i − 0.534442i −0.963635 0.267221i \(-0.913895\pi\)
0.963635 0.267221i \(-0.0861053\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.41269i 0.119888i
\(406\) 0 0
\(407\) −3.64218 −0.180536
\(408\) 0 0
\(409\) − 0.990521i − 0.0489781i −0.999700 0.0244891i \(-0.992204\pi\)
0.999700 0.0244891i \(-0.00779589\pi\)
\(410\) 0 0
\(411\) − 12.8050i − 0.631624i
\(412\) 0 0
\(413\) 5.64218 0.277634
\(414\) 0 0
\(415\) 28.3578 1.39203
\(416\) 0 0
\(417\) 17.1789 0.841255
\(418\) 0 0
\(419\) −12.7156 −0.621199 −0.310600 0.950541i \(-0.600530\pi\)
−0.310600 + 0.950541i \(0.600530\pi\)
\(420\) 0 0
\(421\) 32.1674i 1.56774i 0.620922 + 0.783872i \(0.286758\pi\)
−0.620922 + 0.783872i \(0.713242\pi\)
\(422\) 0 0
\(423\) 10.3923i 0.505291i
\(424\) 0 0
\(425\) 5.07345 0.246098
\(426\) 0 0
\(427\) − 20.7237i − 1.00289i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.6818i 0.899870i 0.893061 + 0.449935i \(0.148553\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(432\) 0 0
\(433\) −2.64218 −0.126975 −0.0634876 0.997983i \(-0.520222\pi\)
−0.0634876 + 0.997983i \(0.520222\pi\)
\(434\) 0 0
\(435\) − 19.7332i − 0.946135i
\(436\) 0 0
\(437\) 6.92820i 0.331421i
\(438\) 0 0
\(439\) 23.8945 1.14042 0.570212 0.821497i \(-0.306861\pi\)
0.570212 + 0.821497i \(0.306861\pi\)
\(440\) 0 0
\(441\) −10.1789 −0.484710
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) 16.7156 0.792397
\(446\) 0 0
\(447\) 5.87680i 0.277963i
\(448\) 0 0
\(449\) − 11.0121i − 0.519691i −0.965650 0.259846i \(-0.916328\pi\)
0.965650 0.259846i \(-0.0836717\pi\)
\(450\) 0 0
\(451\) −20.3578 −0.958612
\(452\) 0 0
\(453\) − 20.0431i − 0.941706i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7.29897i − 0.341431i −0.985320 0.170716i \(-0.945392\pi\)
0.985320 0.170716i \(-0.0546080\pi\)
\(458\) 0 0
\(459\) −6.17891 −0.288407
\(460\) 0 0
\(461\) − 24.5586i − 1.14381i −0.820321 0.571904i \(-0.806205\pi\)
0.820321 0.571904i \(-0.193795\pi\)
\(462\) 0 0
\(463\) − 1.42217i − 0.0660940i −0.999454 0.0330470i \(-0.989479\pi\)
0.999454 0.0330470i \(-0.0105211\pi\)
\(464\) 0 0
\(465\) 18.3578 0.851323
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −17.1789 −0.793248
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 0 0
\(473\) 2.84434i 0.130783i
\(474\) 0 0
\(475\) 2.84434i 0.130507i
\(476\) 0 0
\(477\) −10.1789 −0.466060
\(478\) 0 0
\(479\) 6.92820i 0.316558i 0.987394 + 0.158279i \(0.0505945\pi\)
−0.987394 + 0.158279i \(0.949406\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 8.28949i 0.377185i
\(484\) 0 0
\(485\) 4.92655 0.223703
\(486\) 0 0
\(487\) 24.2487i 1.09881i 0.835555 + 0.549407i \(0.185146\pi\)
−0.835555 + 0.549407i \(0.814854\pi\)
\(488\) 0 0
\(489\) − 7.60885i − 0.344084i
\(490\) 0 0
\(491\) 18.7156 0.844625 0.422312 0.906450i \(-0.361219\pi\)
0.422312 + 0.906450i \(0.361219\pi\)
\(492\) 0 0
\(493\) 50.5367 2.27606
\(494\) 0 0
\(495\) 8.35782 0.375656
\(496\) 0 0
\(497\) −14.3578 −0.644036
\(498\) 0 0
\(499\) − 1.36129i − 0.0609395i −0.999536 0.0304698i \(-0.990300\pi\)
0.999536 0.0304698i \(-0.00970033\pi\)
\(500\) 0 0
\(501\) − 6.92820i − 0.309529i
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 29.3840i 1.30757i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.1663i 0.627910i 0.949438 + 0.313955i \(0.101654\pi\)
−0.949438 + 0.313955i \(0.898346\pi\)
\(510\) 0 0
\(511\) 47.1789 2.08707
\(512\) 0 0
\(513\) − 3.46410i − 0.152944i
\(514\) 0 0
\(515\) 7.66973i 0.337969i
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −38.8945 −1.70400 −0.852000 0.523541i \(-0.824611\pi\)
−0.852000 + 0.523541i \(0.824611\pi\)
\(522\) 0 0
\(523\) 24.3578 1.06509 0.532546 0.846401i \(-0.321235\pi\)
0.532546 + 0.846401i \(0.321235\pi\)
\(524\) 0 0
\(525\) 3.40322i 0.148528i
\(526\) 0 0
\(527\) 47.0144i 2.04798i
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 1.36129i 0.0590748i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 24.1269i − 1.04310i
\(536\) 0 0
\(537\) −8.35782 −0.360666
\(538\) 0 0
\(539\) 35.2608i 1.51879i
\(540\) 0 0
\(541\) 3.09334i 0.132993i 0.997787 + 0.0664965i \(0.0211821\pi\)
−0.997787 + 0.0664965i \(0.978818\pi\)
\(542\) 0 0
\(543\) −20.5367 −0.881315
\(544\) 0 0
\(545\) 18.3578 0.786362
\(546\) 0 0
\(547\) 13.5367 0.578789 0.289394 0.957210i \(-0.406546\pi\)
0.289394 + 0.957210i \(0.406546\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 28.3326i 1.20701i
\(552\) 0 0
\(553\) − 54.6232i − 2.32282i
\(554\) 0 0
\(555\) 2.53673 0.107678
\(556\) 0 0
\(557\) 32.1065i 1.36040i 0.733027 + 0.680199i \(0.238107\pi\)
−0.733027 + 0.680199i \(0.761893\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 21.4044i 0.903693i
\(562\) 0 0
\(563\) −18.3578 −0.773690 −0.386845 0.922145i \(-0.626435\pi\)
−0.386845 + 0.922145i \(0.626435\pi\)
\(564\) 0 0
\(565\) 29.3840i 1.23619i
\(566\) 0 0
\(567\) − 4.14474i − 0.174063i
\(568\) 0 0
\(569\) −30.7156 −1.28767 −0.643833 0.765166i \(-0.722657\pi\)
−0.643833 + 0.765166i \(0.722657\pi\)
\(570\) 0 0
\(571\) −7.64218 −0.319815 −0.159908 0.987132i \(-0.551120\pi\)
−0.159908 + 0.987132i \(0.551120\pi\)
\(572\) 0 0
\(573\) −2.35782 −0.0984992
\(574\) 0 0
\(575\) 1.64218 0.0684838
\(576\) 0 0
\(577\) − 43.2404i − 1.80012i −0.435765 0.900060i \(-0.643522\pi\)
0.435765 0.900060i \(-0.356478\pi\)
\(578\) 0 0
\(579\) 13.4856i 0.560444i
\(580\) 0 0
\(581\) −48.7156 −2.02107
\(582\) 0 0
\(583\) 35.2608i 1.46035i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.1459i 0.914059i 0.889452 + 0.457029i \(0.151087\pi\)
−0.889452 + 0.457029i \(0.848913\pi\)
\(588\) 0 0
\(589\) −26.3578 −1.08605
\(590\) 0 0
\(591\) 9.65078i 0.396980i
\(592\) 0 0
\(593\) − 32.8481i − 1.34891i −0.738316 0.674454i \(-0.764379\pi\)
0.738316 0.674454i \(-0.235621\pi\)
\(594\) 0 0
\(595\) −61.7891 −2.53311
\(596\) 0 0
\(597\) −21.5367 −0.881439
\(598\) 0 0
\(599\) 9.64218 0.393969 0.196984 0.980407i \(-0.436885\pi\)
0.196984 + 0.980407i \(0.436885\pi\)
\(600\) 0 0
\(601\) −0.178908 −0.00729782 −0.00364891 0.999993i \(-0.501161\pi\)
−0.00364891 + 0.999993i \(0.501161\pi\)
\(602\) 0 0
\(603\) − 4.14474i − 0.168787i
\(604\) 0 0
\(605\) − 2.41269i − 0.0980900i
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 33.8995i 1.37368i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.47358i 0.0999070i 0.998752 + 0.0499535i \(0.0159073\pi\)
−0.998752 + 0.0499535i \(0.984093\pi\)
\(614\) 0 0
\(615\) 14.1789 0.571749
\(616\) 0 0
\(617\) 2.41269i 0.0971314i 0.998820 + 0.0485657i \(0.0154650\pi\)
−0.998820 + 0.0485657i \(0.984535\pi\)
\(618\) 0 0
\(619\) 10.3314i 0.415255i 0.978208 + 0.207627i \(0.0665742\pi\)
−0.978208 + 0.207627i \(0.933426\pi\)
\(620\) 0 0
\(621\) −2.00000 −0.0802572
\(622\) 0 0
\(623\) −28.7156 −1.15047
\(624\) 0 0
\(625\) −28.4313 −1.13725
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 6.49655i 0.259034i
\(630\) 0 0
\(631\) 6.24756i 0.248711i 0.992238 + 0.124356i \(0.0396864\pi\)
−0.992238 + 0.124356i \(0.960314\pi\)
\(632\) 0 0
\(633\) −15.5367 −0.617529
\(634\) 0 0
\(635\) − 6.80643i − 0.270105i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 3.46410i − 0.137038i
\(640\) 0 0
\(641\) −0.536725 −0.0211994 −0.0105997 0.999944i \(-0.503374\pi\)
−0.0105997 + 0.999944i \(0.503374\pi\)
\(642\) 0 0
\(643\) − 15.8983i − 0.626969i −0.949593 0.313485i \(-0.898504\pi\)
0.949593 0.313485i \(-0.101496\pi\)
\(644\) 0 0
\(645\) − 1.98104i − 0.0780035i
\(646\) 0 0
\(647\) 13.6422 0.536330 0.268165 0.963373i \(-0.413583\pi\)
0.268165 + 0.963373i \(0.413583\pi\)
\(648\) 0 0
\(649\) 4.71563 0.185105
\(650\) 0 0
\(651\) −31.5367 −1.23602
\(652\) 0 0
\(653\) 0.357817 0.0140024 0.00700122 0.999975i \(-0.497771\pi\)
0.00700122 + 0.999975i \(0.497771\pi\)
\(654\) 0 0
\(655\) 15.3395i 0.599363i
\(656\) 0 0
\(657\) 11.3828i 0.444086i
\(658\) 0 0
\(659\) −8.71563 −0.339513 −0.169756 0.985486i \(-0.554298\pi\)
−0.169756 + 0.985486i \(0.554298\pi\)
\(660\) 0 0
\(661\) − 12.8659i − 0.500425i −0.968191 0.250212i \(-0.919500\pi\)
0.968191 0.250212i \(-0.0805005\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 34.6410i − 1.34332i
\(666\) 0 0
\(667\) 16.3578 0.633377
\(668\) 0 0
\(669\) 15.2177i 0.588350i
\(670\) 0 0
\(671\) − 17.3205i − 0.668651i
\(672\) 0 0
\(673\) −5.35782 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(674\) 0 0
\(675\) −0.821092 −0.0316038
\(676\) 0 0
\(677\) −3.64218 −0.139980 −0.0699902 0.997548i \(-0.522297\pi\)
−0.0699902 + 0.997548i \(0.522297\pi\)
\(678\) 0 0
\(679\) −8.46327 −0.324791
\(680\) 0 0
\(681\) 9.03102i 0.346069i
\(682\) 0 0
\(683\) − 17.9403i − 0.686465i −0.939250 0.343233i \(-0.888478\pi\)
0.939250 0.343233i \(-0.111522\pi\)
\(684\) 0 0
\(685\) 30.8945 1.18042
\(686\) 0 0
\(687\) − 9.65078i − 0.368200i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 8.22860i 0.313031i 0.987676 + 0.156515i \(0.0500261\pi\)
−0.987676 + 0.156515i \(0.949974\pi\)
\(692\) 0 0
\(693\) −14.3578 −0.545408
\(694\) 0 0
\(695\) 41.4474i 1.57219i
\(696\) 0 0
\(697\) 36.3122i 1.37542i
\(698\) 0 0
\(699\) 22.7156 0.859184
\(700\) 0 0
\(701\) 48.3578 1.82645 0.913225 0.407456i \(-0.133584\pi\)
0.913225 + 0.407456i \(0.133584\pi\)
\(702\) 0 0
\(703\) −3.64218 −0.137368
\(704\) 0 0
\(705\) −25.0735 −0.944321
\(706\) 0 0
\(707\) − 50.4785i − 1.89844i
\(708\) 0 0
\(709\) 29.4449i 1.10583i 0.833239 + 0.552913i \(0.186484\pi\)
−0.833239 + 0.552913i \(0.813516\pi\)
\(710\) 0 0
\(711\) 13.1789 0.494248
\(712\) 0 0
\(713\) 15.2177i 0.569907i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.10282i 0.0785311i
\(718\) 0 0
\(719\) −30.3578 −1.13216 −0.566078 0.824352i \(-0.691540\pi\)
−0.566078 + 0.824352i \(0.691540\pi\)
\(720\) 0 0
\(721\) − 13.1758i − 0.490691i
\(722\) 0 0
\(723\) 5.87680i 0.218560i
\(724\) 0 0
\(725\) 6.71563 0.249412
\(726\) 0 0
\(727\) 17.5367 0.650401 0.325201 0.945645i \(-0.394568\pi\)
0.325201 + 0.945645i \(0.394568\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 5.07345 0.187648
\(732\) 0 0
\(733\) 10.6413i 0.393045i 0.980499 + 0.196523i \(0.0629649\pi\)
−0.980499 + 0.196523i \(0.937035\pi\)
\(734\) 0 0
\(735\) − 24.5586i − 0.905857i
\(736\) 0 0
\(737\) −14.3578 −0.528877
\(738\) 0 0
\(739\) 15.2177i 0.559792i 0.960030 + 0.279896i \(0.0903000\pi\)
−0.960030 + 0.279896i \(0.909700\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.36129i 0.0499407i 0.999688 + 0.0249704i \(0.00794914\pi\)
−0.999688 + 0.0249704i \(0.992051\pi\)
\(744\) 0 0
\(745\) −14.1789 −0.519475
\(746\) 0 0
\(747\) − 11.7536i − 0.430041i
\(748\) 0 0
\(749\) 41.4474i 1.51446i
\(750\) 0 0
\(751\) −19.6422 −0.716753 −0.358377 0.933577i \(-0.616670\pi\)
−0.358377 + 0.933577i \(0.616670\pi\)
\(752\) 0 0
\(753\) −20.7156 −0.754920
\(754\) 0 0
\(755\) 48.3578 1.75992
\(756\) 0 0
\(757\) −38.7156 −1.40714 −0.703572 0.710624i \(-0.748413\pi\)
−0.703572 + 0.710624i \(0.748413\pi\)
\(758\) 0 0
\(759\) 6.92820i 0.251478i
\(760\) 0 0
\(761\) − 48.4974i − 1.75803i −0.476794 0.879015i \(-0.658201\pi\)
0.476794 0.879015i \(-0.341799\pi\)
\(762\) 0 0
\(763\) −31.5367 −1.14171
\(764\) 0 0
\(765\) − 14.9078i − 0.538993i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.92820i 0.249837i 0.992167 + 0.124919i \(0.0398670\pi\)
−0.992167 + 0.124919i \(0.960133\pi\)
\(770\) 0 0
\(771\) 22.1789 0.798754
\(772\) 0 0
\(773\) − 31.7967i − 1.14365i −0.820377 0.571823i \(-0.806236\pi\)
0.820377 0.571823i \(-0.193764\pi\)
\(774\) 0 0
\(775\) 6.24756i 0.224419i
\(776\) 0 0
\(777\) −4.35782 −0.156336
\(778\) 0 0
\(779\) −20.3578 −0.729394
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) −8.17891 −0.292290
\(784\) 0 0
\(785\) 16.8889i 0.602789i
\(786\) 0 0
\(787\) − 33.9604i − 1.21056i −0.796014 0.605278i \(-0.793062\pi\)
0.796014 0.605278i \(-0.206938\pi\)
\(788\) 0 0
\(789\) 32.3578 1.15197
\(790\) 0 0
\(791\) − 50.4785i − 1.79481i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 24.5586i − 0.871003i
\(796\) 0 0
\(797\) 17.0735 0.604773 0.302386 0.953185i \(-0.402217\pi\)
0.302386 + 0.953185i \(0.402217\pi\)
\(798\) 0 0
\(799\) − 64.2131i − 2.27170i
\(800\) 0 0
\(801\) − 6.92820i − 0.244796i
\(802\) 0 0
\(803\) 39.4313 1.39150
\(804\) 0 0
\(805\) −20.0000 −0.704907
\(806\) 0 0
\(807\) −12.3578 −0.435016
\(808\) 0 0
\(809\) 46.5367 1.63614 0.818072 0.575116i \(-0.195043\pi\)
0.818072 + 0.575116i \(0.195043\pi\)
\(810\) 0 0
\(811\) − 0.680643i − 0.0239006i −0.999929 0.0119503i \(-0.996196\pi\)
0.999929 0.0119503i \(-0.00380399\pi\)
\(812\) 0 0
\(813\) 14.5370i 0.509837i
\(814\) 0 0
\(815\) 18.3578 0.643046
\(816\) 0 0
\(817\) 2.84434i 0.0995110i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 31.7967i − 1.10971i −0.831947 0.554856i \(-0.812773\pi\)
0.831947 0.554856i \(-0.187227\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 2.84434i 0.0990274i
\(826\) 0 0
\(827\) − 35.8805i − 1.24769i −0.781549 0.623844i \(-0.785570\pi\)
0.781549 0.623844i \(-0.214430\pi\)
\(828\) 0 0
\(829\) 23.3578 0.811251 0.405625 0.914039i \(-0.367054\pi\)
0.405625 + 0.914039i \(0.367054\pi\)
\(830\) 0 0
\(831\) −0.178908 −0.00620626
\(832\) 0 0
\(833\) 62.8945 2.17917
\(834\) 0 0
\(835\) 16.7156 0.578468
\(836\) 0 0
\(837\) − 7.60885i − 0.263000i
\(838\) 0 0
\(839\) − 15.2177i − 0.525373i −0.964881 0.262687i \(-0.915391\pi\)
0.964881 0.262687i \(-0.0846085\pi\)
\(840\) 0 0
\(841\) 37.8945 1.30671
\(842\) 0 0
\(843\) − 11.4437i − 0.394142i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.14474i 0.142415i
\(848\) 0 0
\(849\) −27.1789 −0.932778
\(850\) 0 0
\(851\) 2.10282i 0.0720836i
\(852\) 0 0
\(853\) 24.6195i 0.842955i 0.906839 + 0.421477i \(0.138488\pi\)
−0.906839 + 0.421477i \(0.861512\pi\)
\(854\) 0 0
\(855\) 8.35782 0.285831
\(856\) 0 0
\(857\) −20.1789 −0.689298 −0.344649 0.938732i \(-0.612002\pi\)
−0.344649 + 0.938732i \(0.612002\pi\)
\(858\) 0 0
\(859\) 54.2524 1.85107 0.925533 0.378666i \(-0.123617\pi\)
0.925533 + 0.378666i \(0.123617\pi\)
\(860\) 0 0
\(861\) −24.3578 −0.830112
\(862\) 0 0
\(863\) − 20.0431i − 0.682274i −0.940014 0.341137i \(-0.889188\pi\)
0.940014 0.341137i \(-0.110812\pi\)
\(864\) 0 0
\(865\) 43.4285i 1.47661i
\(866\) 0 0
\(867\) 21.1789 0.719273
\(868\) 0 0
\(869\) − 45.6531i − 1.54867i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 2.04193i − 0.0691088i
\(874\) 0 0
\(875\) 41.7891 1.41273
\(876\) 0 0
\(877\) 12.8050i 0.432394i 0.976350 + 0.216197i \(0.0693654\pi\)
−0.976350 + 0.216197i \(0.930635\pi\)
\(878\) 0 0
\(879\) 32.8481i 1.10794i
\(880\) 0 0
\(881\) −37.8211 −1.27422 −0.637112 0.770771i \(-0.719871\pi\)
−0.637112 + 0.770771i \(0.719871\pi\)
\(882\) 0 0
\(883\) −17.8945 −0.602199 −0.301100 0.953593i \(-0.597354\pi\)
−0.301100 + 0.953593i \(0.597354\pi\)
\(884\) 0 0
\(885\) −3.28437 −0.110403
\(886\) 0 0
\(887\) 21.6422 0.726673 0.363337 0.931658i \(-0.381637\pi\)
0.363337 + 0.931658i \(0.381637\pi\)
\(888\) 0 0
\(889\) 11.6927i 0.392161i
\(890\) 0 0
\(891\) − 3.46410i − 0.116052i
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) − 20.1649i − 0.674037i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 62.2321i 2.07556i
\(900\) 0 0
\(901\) 62.8945 2.09532
\(902\) 0 0
\(903\) 3.40322i 0.113252i
\(904\) 0 0
\(905\) − 49.5488i − 1.64706i
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) 12.1789 0.403949
\(910\) 0 0
\(911\) 4.71563 0.156236 0.0781180 0.996944i \(-0.475109\pi\)
0.0781180 + 0.996944i \(0.475109\pi\)
\(912\) 0 0
\(913\) −40.7156 −1.34749
\(914\) 0 0
\(915\) 12.0635i 0.398806i
\(916\) 0 0
\(917\) − 26.3515i − 0.870204i
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) − 11.0729i − 0.364866i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.863302i 0.0283852i
\(926\) 0 0
\(927\) 3.17891 0.104409
\(928\) 0 0
\(929\) − 31.4868i − 1.03305i −0.856273 0.516524i \(-0.827226\pi\)
0.856273 0.516524i \(-0.172774\pi\)
\(930\) 0 0
\(931\) 35.2608i 1.15563i
\(932\) 0 0
\(933\) 11.6422 0.381148
\(934\) 0 0
\(935\) −51.6422 −1.68888
\(936\) 0 0
\(937\) 48.8945 1.59732 0.798658 0.601786i \(-0.205544\pi\)
0.798658 + 0.601786i \(0.205544\pi\)
\(938\) 0 0
\(939\) 27.8945 0.910304
\(940\) 0 0
\(941\) − 37.2418i − 1.21405i −0.794683 0.607024i \(-0.792363\pi\)
0.794683 0.607024i \(-0.207637\pi\)
\(942\) 0 0
\(943\) 11.7536i 0.382750i
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) 30.4354i 0.989017i 0.869173 + 0.494509i \(0.164652\pi\)
−0.869173 + 0.494509i \(0.835348\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 3.77398i − 0.122380i
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) − 5.68869i − 0.184082i
\(956\) 0 0
\(957\) 28.3326i 0.915862i
\(958\) 0 0
\(959\) −53.0735 −1.71383
\(960\) 0 0
\(961\) −26.8945 −0.867566
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) −32.5367 −1.04739
\(966\) 0 0
\(967\) − 35.3825i − 1.13783i −0.822398 0.568913i \(-0.807364\pi\)
0.822398 0.568913i \(-0.192636\pi\)
\(968\) 0 0
\(969\) 21.4044i 0.687607i
\(970\) 0 0
\(971\) 4.71563 0.151332 0.0756659 0.997133i \(-0.475892\pi\)
0.0756659 + 0.997133i \(0.475892\pi\)
\(972\) 0 0
\(973\) − 71.2022i − 2.28264i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 17.0106i − 0.544218i −0.962266 0.272109i \(-0.912279\pi\)
0.962266 0.272109i \(-0.0877212\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) − 7.60885i − 0.242932i
\(982\) 0 0
\(983\) − 24.8685i − 0.793181i −0.917996 0.396590i \(-0.870193\pi\)
0.917996 0.396590i \(-0.129807\pi\)
\(984\) 0 0
\(985\) −23.2844 −0.741902
\(986\) 0 0
\(987\) 43.0735 1.37104
\(988\) 0 0
\(989\) 1.64218 0.0522184
\(990\) 0 0
\(991\) −45.0735 −1.43181 −0.715903 0.698200i \(-0.753985\pi\)
−0.715903 + 0.698200i \(0.753985\pi\)
\(992\) 0 0
\(993\) − 20.1040i − 0.637980i
\(994\) 0 0
\(995\) − 51.9615i − 1.64729i
\(996\) 0 0
\(997\) 35.3578 1.11979 0.559897 0.828562i \(-0.310841\pi\)
0.559897 + 0.828562i \(0.310841\pi\)
\(998\) 0 0
\(999\) − 1.05141i − 0.0332651i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.b.e.337.3 4
3.2 odd 2 6084.2.b.o.4393.2 4
13.2 odd 12 2028.2.i.n.529.3 8
13.3 even 3 156.2.q.b.121.2 yes 4
13.4 even 6 156.2.q.b.49.1 4
13.5 odd 4 2028.2.a.m.1.3 4
13.6 odd 12 2028.2.i.n.2005.3 8
13.7 odd 12 2028.2.i.n.2005.2 8
13.8 odd 4 2028.2.a.m.1.2 4
13.9 even 3 2028.2.q.f.361.2 4
13.10 even 6 2028.2.q.f.1837.1 4
13.11 odd 12 2028.2.i.n.529.2 8
13.12 even 2 inner 2028.2.b.e.337.2 4
39.5 even 4 6084.2.a.bd.1.2 4
39.8 even 4 6084.2.a.bd.1.3 4
39.17 odd 6 468.2.t.d.361.2 4
39.29 odd 6 468.2.t.d.433.1 4
39.38 odd 2 6084.2.b.o.4393.3 4
52.3 odd 6 624.2.bv.f.433.2 4
52.31 even 4 8112.2.a.cr.1.3 4
52.43 odd 6 624.2.bv.f.49.1 4
52.47 even 4 8112.2.a.cr.1.2 4
65.3 odd 12 3900.2.bw.j.2149.2 8
65.4 even 6 3900.2.cd.i.2701.2 4
65.17 odd 12 3900.2.bw.j.49.2 8
65.29 even 6 3900.2.cd.i.901.2 4
65.42 odd 12 3900.2.bw.j.2149.3 8
65.43 odd 12 3900.2.bw.j.49.3 8
156.95 even 6 1872.2.by.j.1297.2 4
156.107 even 6 1872.2.by.j.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.1 4 13.4 even 6
156.2.q.b.121.2 yes 4 13.3 even 3
468.2.t.d.361.2 4 39.17 odd 6
468.2.t.d.433.1 4 39.29 odd 6
624.2.bv.f.49.1 4 52.43 odd 6
624.2.bv.f.433.2 4 52.3 odd 6
1872.2.by.j.433.1 4 156.107 even 6
1872.2.by.j.1297.2 4 156.95 even 6
2028.2.a.m.1.2 4 13.8 odd 4
2028.2.a.m.1.3 4 13.5 odd 4
2028.2.b.e.337.2 4 13.12 even 2 inner
2028.2.b.e.337.3 4 1.1 even 1 trivial
2028.2.i.n.529.2 8 13.11 odd 12
2028.2.i.n.529.3 8 13.2 odd 12
2028.2.i.n.2005.2 8 13.7 odd 12
2028.2.i.n.2005.3 8 13.6 odd 12
2028.2.q.f.361.2 4 13.9 even 3
2028.2.q.f.1837.1 4 13.10 even 6
3900.2.bw.j.49.2 8 65.17 odd 12
3900.2.bw.j.49.3 8 65.43 odd 12
3900.2.bw.j.2149.2 8 65.3 odd 12
3900.2.bw.j.2149.3 8 65.42 odd 12
3900.2.cd.i.901.2 4 65.29 even 6
3900.2.cd.i.2701.2 4 65.4 even 6
6084.2.a.bd.1.2 4 39.5 even 4
6084.2.a.bd.1.3 4 39.8 even 4
6084.2.b.o.4393.2 4 3.2 odd 2
6084.2.b.o.4393.3 4 39.38 odd 2
8112.2.a.cr.1.2 4 52.47 even 4
8112.2.a.cr.1.3 4 52.31 even 4