Properties

Label 2-2028-1.1-c1-0-14
Degree $2$
Conductor $2028$
Sign $1$
Analytic cond. $16.1936$
Root an. cond. $4.02413$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.14·5-s + 2.41·7-s + 9-s − 3.46·11-s + 4.14·15-s − 5.17·17-s + 3.46·19-s + 2.41·21-s + 2·23-s + 12.1·25-s + 27-s + 3.17·29-s + 1.05·31-s − 3.46·33-s + 10·35-s − 7.60·37-s − 0.680·41-s + 12.1·43-s + 4.14·45-s + 10.3·47-s − 1.17·49-s − 5.17·51-s + 1.17·53-s − 14.3·55-s + 3.46·57-s − 11.7·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.85·5-s + 0.911·7-s + 0.333·9-s − 1.04·11-s + 1.07·15-s − 1.25·17-s + 0.794·19-s + 0.526·21-s + 0.417·23-s + 2.43·25-s + 0.192·27-s + 0.590·29-s + 0.188·31-s − 0.603·33-s + 1.69·35-s − 1.25·37-s − 0.106·41-s + 1.85·43-s + 0.617·45-s + 1.51·47-s − 0.168·49-s − 0.725·51-s + 0.161·53-s − 1.93·55-s + 0.458·57-s − 1.53·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2028\)    =    \(2^{2} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(16.1936\)
Root analytic conductor: \(4.02413\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2028,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.284850419\)
\(L(\frac12)\) \(\approx\) \(3.284850419\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 4.14T + 5T^{2} \)
7 \( 1 - 2.41T + 7T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
17 \( 1 + 5.17T + 17T^{2} \)
19 \( 1 - 3.46T + 19T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 3.17T + 29T^{2} \)
31 \( 1 - 1.05T + 31T^{2} \)
37 \( 1 + 7.60T + 37T^{2} \)
41 \( 1 + 0.680T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 - 10.3T + 47T^{2} \)
53 \( 1 - 1.17T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 5T + 61T^{2} \)
67 \( 1 + 2.41T + 67T^{2} \)
71 \( 1 - 3.46T + 71T^{2} \)
73 \( 1 + 14.8T + 73T^{2} \)
79 \( 1 - 1.82T + 79T^{2} \)
83 \( 1 + 1.36T + 83T^{2} \)
89 \( 1 + 6.92T + 89T^{2} \)
97 \( 1 + 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.070791919329329629574551712953, −8.597308431476677750370056901130, −7.59609458284390640963826227148, −6.82805801462299800089923369862, −5.83103540168679521977385839844, −5.19363998644716118551765009225, −4.44304909659423165112555811789, −2.86030765156726648319526705433, −2.27393052505035443164563026201, −1.34348932482890564086818935588, 1.34348932482890564086818935588, 2.27393052505035443164563026201, 2.86030765156726648319526705433, 4.44304909659423165112555811789, 5.19363998644716118551765009225, 5.83103540168679521977385839844, 6.82805801462299800089923369862, 7.59609458284390640963826227148, 8.597308431476677750370056901130, 9.070791919329329629574551712953

Graph of the $Z$-function along the critical line