Properties

Label 2028.2.a.m.1.4
Level $2028$
Weight $2$
Character 2028.1
Self dual yes
Analytic conductor $16.194$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(1,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{43})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 23x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.14474\) of defining polynomial
Character \(\chi\) \(=\) 2028.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.14474 q^{5} +2.41269 q^{7} +1.00000 q^{9} -3.46410 q^{11} +4.14474 q^{15} -5.17891 q^{17} +3.46410 q^{19} +2.41269 q^{21} +2.00000 q^{23} +12.1789 q^{25} +1.00000 q^{27} +3.17891 q^{29} +1.05141 q^{31} -3.46410 q^{33} +10.0000 q^{35} -7.60885 q^{37} -0.680643 q^{41} +12.1789 q^{43} +4.14474 q^{45} +10.3923 q^{47} -1.17891 q^{49} -5.17891 q^{51} +1.17891 q^{53} -14.3578 q^{55} +3.46410 q^{57} -11.7536 q^{59} +5.00000 q^{61} +2.41269 q^{63} -2.41269 q^{67} +2.00000 q^{69} +3.46410 q^{71} -14.8469 q^{73} +12.1789 q^{75} -8.35782 q^{77} +1.82109 q^{79} +1.00000 q^{81} -1.36129 q^{83} -21.4653 q^{85} +3.17891 q^{87} -6.92820 q^{89} +1.05141 q^{93} +14.3578 q^{95} -17.6304 q^{97} -3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} + 2 q^{17} + 8 q^{23} + 26 q^{25} + 4 q^{27} - 10 q^{29} + 40 q^{35} + 26 q^{43} + 18 q^{49} + 2 q^{51} - 18 q^{53} - 12 q^{55} + 20 q^{61} + 8 q^{69} + 26 q^{75} + 12 q^{77} + 30 q^{79}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 4.14474 1.85359 0.926793 0.375572i \(-0.122554\pi\)
0.926793 + 0.375572i \(0.122554\pi\)
\(6\) 0 0
\(7\) 2.41269 0.911913 0.455956 0.890002i \(-0.349297\pi\)
0.455956 + 0.890002i \(0.349297\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 4.14474 1.07017
\(16\) 0 0
\(17\) −5.17891 −1.25607 −0.628035 0.778185i \(-0.716140\pi\)
−0.628035 + 0.778185i \(0.716140\pi\)
\(18\) 0 0
\(19\) 3.46410 0.794719 0.397360 0.917663i \(-0.369927\pi\)
0.397360 + 0.917663i \(0.369927\pi\)
\(20\) 0 0
\(21\) 2.41269 0.526493
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 12.1789 2.43578
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.17891 0.590308 0.295154 0.955450i \(-0.404629\pi\)
0.295154 + 0.955450i \(0.404629\pi\)
\(30\) 0 0
\(31\) 1.05141 0.188838 0.0944192 0.995533i \(-0.469901\pi\)
0.0944192 + 0.995533i \(0.469901\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) 10.0000 1.69031
\(36\) 0 0
\(37\) −7.60885 −1.25089 −0.625443 0.780270i \(-0.715082\pi\)
−0.625443 + 0.780270i \(0.715082\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.680643 −0.106299 −0.0531493 0.998587i \(-0.516926\pi\)
−0.0531493 + 0.998587i \(0.516926\pi\)
\(42\) 0 0
\(43\) 12.1789 1.85727 0.928633 0.371000i \(-0.120985\pi\)
0.928633 + 0.371000i \(0.120985\pi\)
\(44\) 0 0
\(45\) 4.14474 0.617862
\(46\) 0 0
\(47\) 10.3923 1.51587 0.757937 0.652328i \(-0.226208\pi\)
0.757937 + 0.652328i \(0.226208\pi\)
\(48\) 0 0
\(49\) −1.17891 −0.168415
\(50\) 0 0
\(51\) −5.17891 −0.725192
\(52\) 0 0
\(53\) 1.17891 0.161936 0.0809678 0.996717i \(-0.474199\pi\)
0.0809678 + 0.996717i \(0.474199\pi\)
\(54\) 0 0
\(55\) −14.3578 −1.93601
\(56\) 0 0
\(57\) 3.46410 0.458831
\(58\) 0 0
\(59\) −11.7536 −1.53019 −0.765094 0.643919i \(-0.777307\pi\)
−0.765094 + 0.643919i \(0.777307\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 2.41269 0.303971
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.41269 −0.294757 −0.147379 0.989080i \(-0.547084\pi\)
−0.147379 + 0.989080i \(0.547084\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) −14.8469 −1.73770 −0.868851 0.495074i \(-0.835141\pi\)
−0.868851 + 0.495074i \(0.835141\pi\)
\(74\) 0 0
\(75\) 12.1789 1.40630
\(76\) 0 0
\(77\) −8.35782 −0.952462
\(78\) 0 0
\(79\) 1.82109 0.204889 0.102444 0.994739i \(-0.467334\pi\)
0.102444 + 0.994739i \(0.467334\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.36129 −0.149421 −0.0747103 0.997205i \(-0.523803\pi\)
−0.0747103 + 0.997205i \(0.523803\pi\)
\(84\) 0 0
\(85\) −21.4653 −2.32823
\(86\) 0 0
\(87\) 3.17891 0.340815
\(88\) 0 0
\(89\) −6.92820 −0.734388 −0.367194 0.930144i \(-0.619682\pi\)
−0.367194 + 0.930144i \(0.619682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.05141 0.109026
\(94\) 0 0
\(95\) 14.3578 1.47308
\(96\) 0 0
\(97\) −17.6304 −1.79009 −0.895047 0.445971i \(-0.852858\pi\)
−0.895047 + 0.445971i \(0.852858\pi\)
\(98\) 0 0
\(99\) −3.46410 −0.348155
\(100\) 0 0
\(101\) −0.821092 −0.0817017 −0.0408508 0.999165i \(-0.513007\pi\)
−0.0408508 + 0.999165i \(0.513007\pi\)
\(102\) 0 0
\(103\) 8.17891 0.805892 0.402946 0.915224i \(-0.367986\pi\)
0.402946 + 0.915224i \(0.367986\pi\)
\(104\) 0 0
\(105\) 10.0000 0.975900
\(106\) 0 0
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) 1.05141 0.100707 0.0503533 0.998731i \(-0.483965\pi\)
0.0503533 + 0.998731i \(0.483965\pi\)
\(110\) 0 0
\(111\) −7.60885 −0.722200
\(112\) 0 0
\(113\) 0.821092 0.0772418 0.0386209 0.999254i \(-0.487704\pi\)
0.0386209 + 0.999254i \(0.487704\pi\)
\(114\) 0 0
\(115\) 8.28949 0.772999
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.4951 −1.14543
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) −0.680643 −0.0613715
\(124\) 0 0
\(125\) 29.7547 2.66135
\(126\) 0 0
\(127\) 14.1789 1.25817 0.629087 0.777335i \(-0.283429\pi\)
0.629087 + 0.777335i \(0.283429\pi\)
\(128\) 0 0
\(129\) 12.1789 1.07229
\(130\) 0 0
\(131\) −16.3578 −1.42919 −0.714595 0.699539i \(-0.753389\pi\)
−0.714595 + 0.699539i \(0.753389\pi\)
\(132\) 0 0
\(133\) 8.35782 0.724715
\(134\) 0 0
\(135\) 4.14474 0.356723
\(136\) 0 0
\(137\) −6.24756 −0.533765 −0.266883 0.963729i \(-0.585994\pi\)
−0.266883 + 0.963729i \(0.585994\pi\)
\(138\) 0 0
\(139\) 5.82109 0.493739 0.246869 0.969049i \(-0.420598\pi\)
0.246869 + 0.969049i \(0.420598\pi\)
\(140\) 0 0
\(141\) 10.3923 0.875190
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 13.1758 1.09419
\(146\) 0 0
\(147\) −1.17891 −0.0972347
\(148\) 0 0
\(149\) 0.680643 0.0557605 0.0278802 0.999611i \(-0.491124\pi\)
0.0278802 + 0.999611i \(0.491124\pi\)
\(150\) 0 0
\(151\) 6.18667 0.503464 0.251732 0.967797i \(-0.419000\pi\)
0.251732 + 0.967797i \(0.419000\pi\)
\(152\) 0 0
\(153\) −5.17891 −0.418690
\(154\) 0 0
\(155\) 4.35782 0.350028
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 1.17891 0.0934935
\(160\) 0 0
\(161\) 4.82539 0.380294
\(162\) 0 0
\(163\) −1.05141 −0.0823526 −0.0411763 0.999152i \(-0.513111\pi\)
−0.0411763 + 0.999152i \(0.513111\pi\)
\(164\) 0 0
\(165\) −14.3578 −1.11775
\(166\) 0 0
\(167\) −6.92820 −0.536120 −0.268060 0.963402i \(-0.586383\pi\)
−0.268060 + 0.963402i \(0.586383\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 3.46410 0.264906
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) 29.3840 2.22122
\(176\) 0 0
\(177\) −11.7536 −0.883454
\(178\) 0 0
\(179\) −14.3578 −1.07315 −0.536577 0.843851i \(-0.680283\pi\)
−0.536577 + 0.843851i \(0.680283\pi\)
\(180\) 0 0
\(181\) −13.5367 −1.00618 −0.503088 0.864235i \(-0.667803\pi\)
−0.503088 + 0.864235i \(0.667803\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) −31.5367 −2.31863
\(186\) 0 0
\(187\) 17.9403 1.31192
\(188\) 0 0
\(189\) 2.41269 0.175498
\(190\) 0 0
\(191\) 20.3578 1.47304 0.736520 0.676416i \(-0.236468\pi\)
0.736520 + 0.676416i \(0.236468\pi\)
\(192\) 0 0
\(193\) 0.370765 0.0266882 0.0133441 0.999911i \(-0.495752\pi\)
0.0133441 + 0.999911i \(0.495752\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.5790 1.18120 0.590602 0.806963i \(-0.298890\pi\)
0.590602 + 0.806963i \(0.298890\pi\)
\(198\) 0 0
\(199\) −12.5367 −0.888705 −0.444352 0.895852i \(-0.646566\pi\)
−0.444352 + 0.895852i \(0.646566\pi\)
\(200\) 0 0
\(201\) −2.41269 −0.170178
\(202\) 0 0
\(203\) 7.66973 0.538310
\(204\) 0 0
\(205\) −2.82109 −0.197034
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 18.5367 1.27612 0.638060 0.769986i \(-0.279737\pi\)
0.638060 + 0.769986i \(0.279737\pi\)
\(212\) 0 0
\(213\) 3.46410 0.237356
\(214\) 0 0
\(215\) 50.4785 3.44260
\(216\) 0 0
\(217\) 2.53673 0.172204
\(218\) 0 0
\(219\) −14.8469 −1.00326
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.10282 −0.140815 −0.0704075 0.997518i \(-0.522430\pi\)
−0.0704075 + 0.997518i \(0.522430\pi\)
\(224\) 0 0
\(225\) 12.1789 0.811927
\(226\) 0 0
\(227\) −22.1459 −1.46987 −0.734937 0.678135i \(-0.762788\pi\)
−0.734937 + 0.678135i \(0.762788\pi\)
\(228\) 0 0
\(229\) 16.5790 1.09557 0.547785 0.836619i \(-0.315471\pi\)
0.547785 + 0.836619i \(0.315471\pi\)
\(230\) 0 0
\(231\) −8.35782 −0.549904
\(232\) 0 0
\(233\) 22.7156 1.48815 0.744075 0.668096i \(-0.232890\pi\)
0.744075 + 0.668096i \(0.232890\pi\)
\(234\) 0 0
\(235\) 43.0735 2.80980
\(236\) 0 0
\(237\) 1.82109 0.118293
\(238\) 0 0
\(239\) −15.2177 −0.984351 −0.492175 0.870496i \(-0.663798\pi\)
−0.492175 + 0.870496i \(0.663798\pi\)
\(240\) 0 0
\(241\) −0.680643 −0.0438441 −0.0219220 0.999760i \(-0.506979\pi\)
−0.0219220 + 0.999760i \(0.506979\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −4.88627 −0.312173
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −1.36129 −0.0862680
\(250\) 0 0
\(251\) −24.7156 −1.56004 −0.780018 0.625756i \(-0.784790\pi\)
−0.780018 + 0.625756i \(0.784790\pi\)
\(252\) 0 0
\(253\) −6.92820 −0.435572
\(254\) 0 0
\(255\) −21.4653 −1.34421
\(256\) 0 0
\(257\) −10.8211 −0.675001 −0.337501 0.941325i \(-0.609581\pi\)
−0.337501 + 0.941325i \(0.609581\pi\)
\(258\) 0 0
\(259\) −18.3578 −1.14070
\(260\) 0 0
\(261\) 3.17891 0.196769
\(262\) 0 0
\(263\) 9.64218 0.594562 0.297281 0.954790i \(-0.403920\pi\)
0.297281 + 0.954790i \(0.403920\pi\)
\(264\) 0 0
\(265\) 4.88627 0.300161
\(266\) 0 0
\(267\) −6.92820 −0.423999
\(268\) 0 0
\(269\) 10.3578 0.631527 0.315764 0.948838i \(-0.397739\pi\)
0.315764 + 0.948838i \(0.397739\pi\)
\(270\) 0 0
\(271\) 7.97961 0.484727 0.242363 0.970186i \(-0.422077\pi\)
0.242363 + 0.970186i \(0.422077\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −42.1890 −2.54409
\(276\) 0 0
\(277\) −11.1789 −0.671676 −0.335838 0.941920i \(-0.609019\pi\)
−0.335838 + 0.941920i \(0.609019\pi\)
\(278\) 0 0
\(279\) 1.05141 0.0629461
\(280\) 0 0
\(281\) −18.0012 −1.07386 −0.536929 0.843627i \(-0.680416\pi\)
−0.536929 + 0.843627i \(0.680416\pi\)
\(282\) 0 0
\(283\) 15.8211 0.940466 0.470233 0.882542i \(-0.344170\pi\)
0.470233 + 0.882542i \(0.344170\pi\)
\(284\) 0 0
\(285\) 14.3578 0.850484
\(286\) 0 0
\(287\) −1.64218 −0.0969350
\(288\) 0 0
\(289\) 9.82109 0.577711
\(290\) 0 0
\(291\) −17.6304 −1.03351
\(292\) 0 0
\(293\) 0.0608864 0.00355702 0.00177851 0.999998i \(-0.499434\pi\)
0.00177851 + 0.999998i \(0.499434\pi\)
\(294\) 0 0
\(295\) −48.7156 −2.83633
\(296\) 0 0
\(297\) −3.46410 −0.201008
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 29.3840 1.69366
\(302\) 0 0
\(303\) −0.821092 −0.0471705
\(304\) 0 0
\(305\) 20.7237 1.18664
\(306\) 0 0
\(307\) −4.51551 −0.257714 −0.128857 0.991663i \(-0.541131\pi\)
−0.128857 + 0.991663i \(0.541131\pi\)
\(308\) 0 0
\(309\) 8.17891 0.465282
\(310\) 0 0
\(311\) −34.3578 −1.94825 −0.974127 0.226003i \(-0.927434\pi\)
−0.974127 + 0.226003i \(0.927434\pi\)
\(312\) 0 0
\(313\) −28.8945 −1.63322 −0.816608 0.577193i \(-0.804148\pi\)
−0.816608 + 0.577193i \(0.804148\pi\)
\(314\) 0 0
\(315\) 10.0000 0.563436
\(316\) 0 0
\(317\) −15.8983 −0.892939 −0.446470 0.894799i \(-0.647319\pi\)
−0.446470 + 0.894799i \(0.647319\pi\)
\(318\) 0 0
\(319\) −11.0121 −0.616557
\(320\) 0 0
\(321\) −10.0000 −0.558146
\(322\) 0 0
\(323\) −17.9403 −0.998223
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.05141 0.0581430
\(328\) 0 0
\(329\) 25.0735 1.38234
\(330\) 0 0
\(331\) 26.6614 1.46544 0.732722 0.680528i \(-0.238250\pi\)
0.732722 + 0.680528i \(0.238250\pi\)
\(332\) 0 0
\(333\) −7.60885 −0.416962
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) 2.64218 0.143929 0.0719644 0.997407i \(-0.477073\pi\)
0.0719644 + 0.997407i \(0.477073\pi\)
\(338\) 0 0
\(339\) 0.821092 0.0445956
\(340\) 0 0
\(341\) −3.64218 −0.197235
\(342\) 0 0
\(343\) −19.7332 −1.06549
\(344\) 0 0
\(345\) 8.28949 0.446291
\(346\) 0 0
\(347\) −2.35782 −0.126574 −0.0632871 0.997995i \(-0.520158\pi\)
−0.0632871 + 0.997995i \(0.520158\pi\)
\(348\) 0 0
\(349\) 22.4558 1.20203 0.601015 0.799238i \(-0.294763\pi\)
0.601015 + 0.799238i \(0.294763\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.7955 −0.734261 −0.367131 0.930169i \(-0.619660\pi\)
−0.367131 + 0.930169i \(0.619660\pi\)
\(354\) 0 0
\(355\) 14.3578 0.762034
\(356\) 0 0
\(357\) −12.4951 −0.661312
\(358\) 0 0
\(359\) 5.56692 0.293811 0.146905 0.989151i \(-0.453069\pi\)
0.146905 + 0.989151i \(0.453069\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 0 0
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −61.5367 −3.22098
\(366\) 0 0
\(367\) 24.1789 1.26213 0.631064 0.775730i \(-0.282618\pi\)
0.631064 + 0.775730i \(0.282618\pi\)
\(368\) 0 0
\(369\) −0.680643 −0.0354329
\(370\) 0 0
\(371\) 2.84434 0.147671
\(372\) 0 0
\(373\) 11.3578 0.588085 0.294043 0.955792i \(-0.404999\pi\)
0.294043 + 0.955792i \(0.404999\pi\)
\(374\) 0 0
\(375\) 29.7547 1.53653
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.8050 −0.657749 −0.328874 0.944374i \(-0.606669\pi\)
−0.328874 + 0.944374i \(0.606669\pi\)
\(380\) 0 0
\(381\) 14.1789 0.726407
\(382\) 0 0
\(383\) −33.1580 −1.69429 −0.847146 0.531360i \(-0.821681\pi\)
−0.847146 + 0.531360i \(0.821681\pi\)
\(384\) 0 0
\(385\) −34.6410 −1.76547
\(386\) 0 0
\(387\) 12.1789 0.619089
\(388\) 0 0
\(389\) −27.5367 −1.39617 −0.698084 0.716016i \(-0.745964\pi\)
−0.698084 + 0.716016i \(0.745964\pi\)
\(390\) 0 0
\(391\) −10.3578 −0.523817
\(392\) 0 0
\(393\) −16.3578 −0.825143
\(394\) 0 0
\(395\) 7.54796 0.379779
\(396\) 0 0
\(397\) 14.9078 0.748202 0.374101 0.927388i \(-0.377951\pi\)
0.374101 + 0.927388i \(0.377951\pi\)
\(398\) 0 0
\(399\) 8.35782 0.418414
\(400\) 0 0
\(401\) 8.97013 0.447947 0.223974 0.974595i \(-0.428097\pi\)
0.223974 + 0.974595i \(0.428097\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 4.14474 0.205954
\(406\) 0 0
\(407\) 26.3578 1.30651
\(408\) 0 0
\(409\) −25.2392 −1.24800 −0.624000 0.781424i \(-0.714493\pi\)
−0.624000 + 0.781424i \(0.714493\pi\)
\(410\) 0 0
\(411\) −6.24756 −0.308169
\(412\) 0 0
\(413\) −28.3578 −1.39540
\(414\) 0 0
\(415\) −5.64218 −0.276964
\(416\) 0 0
\(417\) 5.82109 0.285060
\(418\) 0 0
\(419\) 32.7156 1.59826 0.799132 0.601156i \(-0.205293\pi\)
0.799132 + 0.601156i \(0.205293\pi\)
\(420\) 0 0
\(421\) −5.93768 −0.289385 −0.144692 0.989477i \(-0.546219\pi\)
−0.144692 + 0.989477i \(0.546219\pi\)
\(422\) 0 0
\(423\) 10.3923 0.505291
\(424\) 0 0
\(425\) −63.0735 −3.05951
\(426\) 0 0
\(427\) 12.0635 0.583792
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.56692 −0.268149 −0.134074 0.990971i \(-0.542806\pi\)
−0.134074 + 0.990971i \(0.542806\pi\)
\(432\) 0 0
\(433\) 25.3578 1.21862 0.609309 0.792933i \(-0.291447\pi\)
0.609309 + 0.792933i \(0.291447\pi\)
\(434\) 0 0
\(435\) 13.1758 0.631730
\(436\) 0 0
\(437\) 6.92820 0.331421
\(438\) 0 0
\(439\) 32.8945 1.56997 0.784985 0.619514i \(-0.212670\pi\)
0.784985 + 0.619514i \(0.212670\pi\)
\(440\) 0 0
\(441\) −1.17891 −0.0561385
\(442\) 0 0
\(443\) 8.00000 0.380091 0.190046 0.981775i \(-0.439136\pi\)
0.190046 + 0.981775i \(0.439136\pi\)
\(444\) 0 0
\(445\) −28.7156 −1.36125
\(446\) 0 0
\(447\) 0.680643 0.0321933
\(448\) 0 0
\(449\) 28.3326 1.33710 0.668548 0.743669i \(-0.266916\pi\)
0.668548 + 0.743669i \(0.266916\pi\)
\(450\) 0 0
\(451\) 2.35782 0.111025
\(452\) 0 0
\(453\) 6.18667 0.290675
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.4138 0.954919 0.477460 0.878654i \(-0.341558\pi\)
0.477460 + 0.878654i \(0.341558\pi\)
\(458\) 0 0
\(459\) −5.17891 −0.241731
\(460\) 0 0
\(461\) 4.88627 0.227576 0.113788 0.993505i \(-0.463701\pi\)
0.113788 + 0.993505i \(0.463701\pi\)
\(462\) 0 0
\(463\) −21.0945 −0.980344 −0.490172 0.871626i \(-0.663066\pi\)
−0.490172 + 0.871626i \(0.663066\pi\)
\(464\) 0 0
\(465\) 4.35782 0.202089
\(466\) 0 0
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −5.82109 −0.268793
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 0 0
\(473\) −42.1890 −1.93985
\(474\) 0 0
\(475\) 42.1890 1.93576
\(476\) 0 0
\(477\) 1.17891 0.0539785
\(478\) 0 0
\(479\) 6.92820 0.316558 0.158279 0.987394i \(-0.449406\pi\)
0.158279 + 0.987394i \(0.449406\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 4.82539 0.219563
\(484\) 0 0
\(485\) −73.0735 −3.31809
\(486\) 0 0
\(487\) −24.2487 −1.09881 −0.549407 0.835555i \(-0.685146\pi\)
−0.549407 + 0.835555i \(0.685146\pi\)
\(488\) 0 0
\(489\) −1.05141 −0.0475463
\(490\) 0 0
\(491\) 26.7156 1.20566 0.602830 0.797870i \(-0.294040\pi\)
0.602830 + 0.797870i \(0.294040\pi\)
\(492\) 0 0
\(493\) −16.4633 −0.741469
\(494\) 0 0
\(495\) −14.3578 −0.645336
\(496\) 0 0
\(497\) 8.35782 0.374899
\(498\) 0 0
\(499\) −11.7536 −0.526163 −0.263081 0.964774i \(-0.584739\pi\)
−0.263081 + 0.964774i \(0.584739\pi\)
\(500\) 0 0
\(501\) −6.92820 −0.309529
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −3.40322 −0.151441
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.50603 0.244051 0.122025 0.992527i \(-0.461061\pi\)
0.122025 + 0.992527i \(0.461061\pi\)
\(510\) 0 0
\(511\) −35.8211 −1.58463
\(512\) 0 0
\(513\) 3.46410 0.152944
\(514\) 0 0
\(515\) 33.8995 1.49379
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) 17.8945 0.783974 0.391987 0.919971i \(-0.371788\pi\)
0.391987 + 0.919971i \(0.371788\pi\)
\(522\) 0 0
\(523\) 1.64218 0.0718077 0.0359038 0.999355i \(-0.488569\pi\)
0.0359038 + 0.999355i \(0.488569\pi\)
\(524\) 0 0
\(525\) 29.3840 1.28242
\(526\) 0 0
\(527\) −5.44514 −0.237194
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −11.7536 −0.510062
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −41.4474 −1.79193
\(536\) 0 0
\(537\) −14.3578 −0.619586
\(538\) 0 0
\(539\) 4.08386 0.175904
\(540\) 0 0
\(541\) −10.0215 −0.430860 −0.215430 0.976519i \(-0.569115\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(542\) 0 0
\(543\) −13.5367 −0.580916
\(544\) 0 0
\(545\) 4.35782 0.186668
\(546\) 0 0
\(547\) −20.5367 −0.878087 −0.439043 0.898466i \(-0.644683\pi\)
−0.439043 + 0.898466i \(0.644683\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 11.0121 0.469130
\(552\) 0 0
\(553\) 4.39374 0.186841
\(554\) 0 0
\(555\) −31.5367 −1.33866
\(556\) 0 0
\(557\) −26.9104 −1.14023 −0.570115 0.821565i \(-0.693101\pi\)
−0.570115 + 0.821565i \(0.693101\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 17.9403 0.757439
\(562\) 0 0
\(563\) −4.35782 −0.183660 −0.0918300 0.995775i \(-0.529272\pi\)
−0.0918300 + 0.995775i \(0.529272\pi\)
\(564\) 0 0
\(565\) 3.40322 0.143174
\(566\) 0 0
\(567\) 2.41269 0.101324
\(568\) 0 0
\(569\) −14.7156 −0.616911 −0.308456 0.951239i \(-0.599812\pi\)
−0.308456 + 0.951239i \(0.599812\pi\)
\(570\) 0 0
\(571\) 30.3578 1.27044 0.635218 0.772333i \(-0.280910\pi\)
0.635218 + 0.772333i \(0.280910\pi\)
\(572\) 0 0
\(573\) 20.3578 0.850460
\(574\) 0 0
\(575\) 24.3578 1.01579
\(576\) 0 0
\(577\) 10.4532 0.435172 0.217586 0.976041i \(-0.430182\pi\)
0.217586 + 0.976041i \(0.430182\pi\)
\(578\) 0 0
\(579\) 0.370765 0.0154085
\(580\) 0 0
\(581\) −3.28437 −0.136258
\(582\) 0 0
\(583\) −4.08386 −0.169136
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.03102 −0.372750 −0.186375 0.982479i \(-0.559674\pi\)
−0.186375 + 0.982479i \(0.559674\pi\)
\(588\) 0 0
\(589\) 3.64218 0.150074
\(590\) 0 0
\(591\) 16.5790 0.681968
\(592\) 0 0
\(593\) −0.0608864 −0.00250030 −0.00125015 0.999999i \(-0.500398\pi\)
−0.00125015 + 0.999999i \(0.500398\pi\)
\(594\) 0 0
\(595\) −51.7891 −2.12315
\(596\) 0 0
\(597\) −12.5367 −0.513094
\(598\) 0 0
\(599\) 32.3578 1.32210 0.661052 0.750340i \(-0.270110\pi\)
0.661052 + 0.750340i \(0.270110\pi\)
\(600\) 0 0
\(601\) 11.1789 0.455997 0.227999 0.973661i \(-0.426782\pi\)
0.227999 + 0.973661i \(0.426782\pi\)
\(602\) 0 0
\(603\) −2.41269 −0.0982525
\(604\) 0 0
\(605\) 4.14474 0.168508
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 7.66973 0.310793
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −28.7033 −1.15932 −0.579658 0.814860i \(-0.696814\pi\)
−0.579658 + 0.814860i \(0.696814\pi\)
\(614\) 0 0
\(615\) −2.82109 −0.113757
\(616\) 0 0
\(617\) 4.14474 0.166861 0.0834306 0.996514i \(-0.473412\pi\)
0.0834306 + 0.996514i \(0.473412\pi\)
\(618\) 0 0
\(619\) −22.4558 −0.902574 −0.451287 0.892379i \(-0.649035\pi\)
−0.451287 + 0.892379i \(0.649035\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 0 0
\(623\) −16.7156 −0.669698
\(624\) 0 0
\(625\) 62.4313 2.49725
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 39.4055 1.57120
\(630\) 0 0
\(631\) 12.8050 0.509759 0.254879 0.966973i \(-0.417964\pi\)
0.254879 + 0.966973i \(0.417964\pi\)
\(632\) 0 0
\(633\) 18.5367 0.736769
\(634\) 0 0
\(635\) 58.7680 2.33214
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.46410 0.137038
\(640\) 0 0
\(641\) −33.5367 −1.32462 −0.662310 0.749229i \(-0.730424\pi\)
−0.662310 + 0.749229i \(0.730424\pi\)
\(642\) 0 0
\(643\) −3.77398 −0.148831 −0.0744156 0.997227i \(-0.523709\pi\)
−0.0744156 + 0.997227i \(0.523709\pi\)
\(644\) 0 0
\(645\) 50.4785 1.98759
\(646\) 0 0
\(647\) −36.3578 −1.42937 −0.714687 0.699445i \(-0.753431\pi\)
−0.714687 + 0.699445i \(0.753431\pi\)
\(648\) 0 0
\(649\) 40.7156 1.59823
\(650\) 0 0
\(651\) 2.53673 0.0994221
\(652\) 0 0
\(653\) −22.3578 −0.874929 −0.437464 0.899236i \(-0.644123\pi\)
−0.437464 + 0.899236i \(0.644123\pi\)
\(654\) 0 0
\(655\) −67.7990 −2.64913
\(656\) 0 0
\(657\) −14.8469 −0.579234
\(658\) 0 0
\(659\) 36.7156 1.43024 0.715119 0.699003i \(-0.246372\pi\)
0.715119 + 0.699003i \(0.246372\pi\)
\(660\) 0 0
\(661\) −39.0956 −1.52064 −0.760322 0.649546i \(-0.774959\pi\)
−0.760322 + 0.649546i \(0.774959\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 34.6410 1.34332
\(666\) 0 0
\(667\) 6.35782 0.246176
\(668\) 0 0
\(669\) −2.10282 −0.0812995
\(670\) 0 0
\(671\) −17.3205 −0.668651
\(672\) 0 0
\(673\) −17.3578 −0.669095 −0.334547 0.942379i \(-0.608583\pi\)
−0.334547 + 0.942379i \(0.608583\pi\)
\(674\) 0 0
\(675\) 12.1789 0.468766
\(676\) 0 0
\(677\) −26.3578 −1.01301 −0.506507 0.862236i \(-0.669063\pi\)
−0.506507 + 0.862236i \(0.669063\pi\)
\(678\) 0 0
\(679\) −42.5367 −1.63241
\(680\) 0 0
\(681\) −22.1459 −0.848633
\(682\) 0 0
\(683\) 21.4044 0.819015 0.409508 0.912307i \(-0.365700\pi\)
0.409508 + 0.912307i \(0.365700\pi\)
\(684\) 0 0
\(685\) −25.8945 −0.989380
\(686\) 0 0
\(687\) 16.5790 0.632527
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 37.6735 1.43317 0.716583 0.697502i \(-0.245705\pi\)
0.716583 + 0.697502i \(0.245705\pi\)
\(692\) 0 0
\(693\) −8.35782 −0.317487
\(694\) 0 0
\(695\) 24.1269 0.915187
\(696\) 0 0
\(697\) 3.52499 0.133518
\(698\) 0 0
\(699\) 22.7156 0.859184
\(700\) 0 0
\(701\) −25.6422 −0.968492 −0.484246 0.874932i \(-0.660906\pi\)
−0.484246 + 0.874932i \(0.660906\pi\)
\(702\) 0 0
\(703\) −26.3578 −0.994104
\(704\) 0 0
\(705\) 43.0735 1.62224
\(706\) 0 0
\(707\) −1.98104 −0.0745048
\(708\) 0 0
\(709\) 29.4449 1.10583 0.552913 0.833239i \(-0.313516\pi\)
0.552913 + 0.833239i \(0.313516\pi\)
\(710\) 0 0
\(711\) 1.82109 0.0682963
\(712\) 0 0
\(713\) 2.10282 0.0787511
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −15.2177 −0.568315
\(718\) 0 0
\(719\) 7.64218 0.285005 0.142503 0.989794i \(-0.454485\pi\)
0.142503 + 0.989794i \(0.454485\pi\)
\(720\) 0 0
\(721\) 19.7332 0.734903
\(722\) 0 0
\(723\) −0.680643 −0.0253134
\(724\) 0 0
\(725\) 38.7156 1.43786
\(726\) 0 0
\(727\) 16.5367 0.613313 0.306657 0.951820i \(-0.400790\pi\)
0.306657 + 0.951820i \(0.400790\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −63.0735 −2.33286
\(732\) 0 0
\(733\) 41.8182 1.54459 0.772295 0.635264i \(-0.219109\pi\)
0.772295 + 0.635264i \(0.219109\pi\)
\(734\) 0 0
\(735\) −4.88627 −0.180233
\(736\) 0 0
\(737\) 8.35782 0.307864
\(738\) 0 0
\(739\) 2.10282 0.0773533 0.0386767 0.999252i \(-0.487686\pi\)
0.0386767 + 0.999252i \(0.487686\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.7536 0.431197 0.215599 0.976482i \(-0.430830\pi\)
0.215599 + 0.976482i \(0.430830\pi\)
\(744\) 0 0
\(745\) 2.82109 0.103357
\(746\) 0 0
\(747\) −1.36129 −0.0498069
\(748\) 0 0
\(749\) −24.1269 −0.881579
\(750\) 0 0
\(751\) 42.3578 1.54566 0.772829 0.634614i \(-0.218841\pi\)
0.772829 + 0.634614i \(0.218841\pi\)
\(752\) 0 0
\(753\) −24.7156 −0.900688
\(754\) 0 0
\(755\) 25.6422 0.933215
\(756\) 0 0
\(757\) 6.71563 0.244084 0.122042 0.992525i \(-0.461056\pi\)
0.122042 + 0.992525i \(0.461056\pi\)
\(758\) 0 0
\(759\) −6.92820 −0.251478
\(760\) 0 0
\(761\) −48.4974 −1.75803 −0.879015 0.476794i \(-0.841799\pi\)
−0.879015 + 0.476794i \(0.841799\pi\)
\(762\) 0 0
\(763\) 2.53673 0.0918356
\(764\) 0 0
\(765\) −21.4653 −0.776078
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −6.92820 −0.249837 −0.124919 0.992167i \(-0.539867\pi\)
−0.124919 + 0.992167i \(0.539867\pi\)
\(770\) 0 0
\(771\) −10.8211 −0.389712
\(772\) 0 0
\(773\) −7.54796 −0.271481 −0.135741 0.990744i \(-0.543341\pi\)
−0.135741 + 0.990744i \(0.543341\pi\)
\(774\) 0 0
\(775\) 12.8050 0.459969
\(776\) 0 0
\(777\) −18.3578 −0.658583
\(778\) 0 0
\(779\) −2.35782 −0.0844775
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 3.17891 0.113605
\(784\) 0 0
\(785\) 29.0132 1.03553
\(786\) 0 0
\(787\) −40.5178 −1.44430 −0.722152 0.691734i \(-0.756847\pi\)
−0.722152 + 0.691734i \(0.756847\pi\)
\(788\) 0 0
\(789\) 9.64218 0.343271
\(790\) 0 0
\(791\) 1.98104 0.0704378
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4.88627 0.173298
\(796\) 0 0
\(797\) 51.0735 1.80911 0.904557 0.426352i \(-0.140202\pi\)
0.904557 + 0.426352i \(0.140202\pi\)
\(798\) 0 0
\(799\) −53.8208 −1.90404
\(800\) 0 0
\(801\) −6.92820 −0.244796
\(802\) 0 0
\(803\) 51.4313 1.81497
\(804\) 0 0
\(805\) 20.0000 0.704907
\(806\) 0 0
\(807\) 10.3578 0.364612
\(808\) 0 0
\(809\) 12.4633 0.438185 0.219093 0.975704i \(-0.429690\pi\)
0.219093 + 0.975704i \(0.429690\pi\)
\(810\) 0 0
\(811\) −5.87680 −0.206362 −0.103181 0.994663i \(-0.532902\pi\)
−0.103181 + 0.994663i \(0.532902\pi\)
\(812\) 0 0
\(813\) 7.97961 0.279857
\(814\) 0 0
\(815\) −4.35782 −0.152648
\(816\) 0 0
\(817\) 42.1890 1.47601
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.54796 −0.263426 −0.131713 0.991288i \(-0.542048\pi\)
−0.131713 + 0.991288i \(0.542048\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) −42.1890 −1.46883
\(826\) 0 0
\(827\) 42.8087 1.48861 0.744303 0.667842i \(-0.232782\pi\)
0.744303 + 0.667842i \(0.232782\pi\)
\(828\) 0 0
\(829\) −0.642183 −0.0223039 −0.0111520 0.999938i \(-0.503550\pi\)
−0.0111520 + 0.999938i \(0.503550\pi\)
\(830\) 0 0
\(831\) −11.1789 −0.387792
\(832\) 0 0
\(833\) 6.10546 0.211542
\(834\) 0 0
\(835\) −28.7156 −0.993745
\(836\) 0 0
\(837\) 1.05141 0.0363420
\(838\) 0 0
\(839\) −2.10282 −0.0725973 −0.0362986 0.999341i \(-0.511557\pi\)
−0.0362986 + 0.999341i \(0.511557\pi\)
\(840\) 0 0
\(841\) −18.8945 −0.651536
\(842\) 0 0
\(843\) −18.0012 −0.619993
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.41269 0.0829011
\(848\) 0 0
\(849\) 15.8211 0.542978
\(850\) 0 0
\(851\) −15.2177 −0.521656
\(852\) 0 0
\(853\) 37.7344 1.29200 0.646000 0.763338i \(-0.276441\pi\)
0.646000 + 0.763338i \(0.276441\pi\)
\(854\) 0 0
\(855\) 14.3578 0.491027
\(856\) 0 0
\(857\) 8.82109 0.301323 0.150661 0.988585i \(-0.451860\pi\)
0.150661 + 0.988585i \(0.451860\pi\)
\(858\) 0 0
\(859\) −25.2524 −0.861599 −0.430800 0.902448i \(-0.641768\pi\)
−0.430800 + 0.902448i \(0.641768\pi\)
\(860\) 0 0
\(861\) −1.64218 −0.0559655
\(862\) 0 0
\(863\) −6.18667 −0.210597 −0.105298 0.994441i \(-0.533580\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(864\) 0 0
\(865\) −74.6054 −2.53666
\(866\) 0 0
\(867\) 9.82109 0.333542
\(868\) 0 0
\(869\) −6.30845 −0.213999
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −17.6304 −0.596698
\(874\) 0 0
\(875\) 71.7891 2.42691
\(876\) 0 0
\(877\) −6.24756 −0.210965 −0.105483 0.994421i \(-0.533639\pi\)
−0.105483 + 0.994421i \(0.533639\pi\)
\(878\) 0 0
\(879\) 0.0608864 0.00205365
\(880\) 0 0
\(881\) 49.1789 1.65688 0.828440 0.560078i \(-0.189229\pi\)
0.828440 + 0.560078i \(0.189229\pi\)
\(882\) 0 0
\(883\) −38.8945 −1.30891 −0.654453 0.756103i \(-0.727101\pi\)
−0.654453 + 0.756103i \(0.727101\pi\)
\(884\) 0 0
\(885\) −48.7156 −1.63756
\(886\) 0 0
\(887\) 44.3578 1.48939 0.744695 0.667405i \(-0.232595\pi\)
0.744695 + 0.667405i \(0.232595\pi\)
\(888\) 0 0
\(889\) 34.2094 1.14735
\(890\) 0 0
\(891\) −3.46410 −0.116052
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) −59.5095 −1.98918
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.34233 0.111473
\(900\) 0 0
\(901\) −6.10546 −0.203402
\(902\) 0 0
\(903\) 29.3840 0.977838
\(904\) 0 0
\(905\) −56.1063 −1.86504
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) −0.821092 −0.0272339
\(910\) 0 0
\(911\) −40.7156 −1.34897 −0.674485 0.738289i \(-0.735634\pi\)
−0.674485 + 0.738289i \(0.735634\pi\)
\(912\) 0 0
\(913\) 4.71563 0.156065
\(914\) 0 0
\(915\) 20.7237 0.685105
\(916\) 0 0
\(917\) −39.4664 −1.30330
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) −4.51551 −0.148791
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −92.6674 −3.04689
\(926\) 0 0
\(927\) 8.17891 0.268631
\(928\) 0 0
\(929\) 11.8145 0.387620 0.193810 0.981039i \(-0.437915\pi\)
0.193810 + 0.981039i \(0.437915\pi\)
\(930\) 0 0
\(931\) −4.08386 −0.133843
\(932\) 0 0
\(933\) −34.3578 −1.12482
\(934\) 0 0
\(935\) 74.3578 2.43176
\(936\) 0 0
\(937\) −7.89454 −0.257903 −0.128952 0.991651i \(-0.541161\pi\)
−0.128952 + 0.991651i \(0.541161\pi\)
\(938\) 0 0
\(939\) −28.8945 −0.942938
\(940\) 0 0
\(941\) −54.5623 −1.77868 −0.889340 0.457246i \(-0.848836\pi\)
−0.889340 + 0.457246i \(0.848836\pi\)
\(942\) 0 0
\(943\) −1.36129 −0.0443296
\(944\) 0 0
\(945\) 10.0000 0.325300
\(946\) 0 0
\(947\) 4.20563 0.136665 0.0683323 0.997663i \(-0.478232\pi\)
0.0683323 + 0.997663i \(0.478232\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −15.8983 −0.515539
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 84.3780 2.73041
\(956\) 0 0
\(957\) −11.0121 −0.355969
\(958\) 0 0
\(959\) −15.0735 −0.486747
\(960\) 0 0
\(961\) −29.8945 −0.964340
\(962\) 0 0
\(963\) −10.0000 −0.322245
\(964\) 0 0
\(965\) 1.53673 0.0494689
\(966\) 0 0
\(967\) 61.6123 1.98132 0.990659 0.136363i \(-0.0435412\pi\)
0.990659 + 0.136363i \(0.0435412\pi\)
\(968\) 0 0
\(969\) −17.9403 −0.576324
\(970\) 0 0
\(971\) −40.7156 −1.30663 −0.653313 0.757088i \(-0.726622\pi\)
−0.653313 + 0.757088i \(0.726622\pi\)
\(972\) 0 0
\(973\) 14.0445 0.450246
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.6829 1.17359 0.586796 0.809735i \(-0.300389\pi\)
0.586796 + 0.809735i \(0.300389\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 1.05141 0.0335689
\(982\) 0 0
\(983\) 14.4762 0.461718 0.230859 0.972987i \(-0.425846\pi\)
0.230859 + 0.972987i \(0.425846\pi\)
\(984\) 0 0
\(985\) 68.7156 2.18946
\(986\) 0 0
\(987\) 25.0735 0.798097
\(988\) 0 0
\(989\) 24.3578 0.774534
\(990\) 0 0
\(991\) 23.0735 0.732952 0.366476 0.930427i \(-0.380564\pi\)
0.366476 + 0.930427i \(0.380564\pi\)
\(992\) 0 0
\(993\) 26.6614 0.846074
\(994\) 0 0
\(995\) −51.9615 −1.64729
\(996\) 0 0
\(997\) 12.6422 0.400382 0.200191 0.979757i \(-0.435844\pi\)
0.200191 + 0.979757i \(0.435844\pi\)
\(998\) 0 0
\(999\) −7.60885 −0.240733
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.2.a.m.1.4 4
3.2 odd 2 6084.2.a.bd.1.1 4
4.3 odd 2 8112.2.a.cr.1.4 4
13.2 odd 12 156.2.q.b.121.1 yes 4
13.3 even 3 2028.2.i.n.529.4 8
13.4 even 6 2028.2.i.n.2005.1 8
13.5 odd 4 2028.2.b.e.337.1 4
13.6 odd 12 2028.2.q.f.361.1 4
13.7 odd 12 156.2.q.b.49.2 4
13.8 odd 4 2028.2.b.e.337.4 4
13.9 even 3 2028.2.i.n.2005.4 8
13.10 even 6 2028.2.i.n.529.1 8
13.11 odd 12 2028.2.q.f.1837.2 4
13.12 even 2 inner 2028.2.a.m.1.1 4
39.2 even 12 468.2.t.d.433.2 4
39.5 even 4 6084.2.b.o.4393.4 4
39.8 even 4 6084.2.b.o.4393.1 4
39.20 even 12 468.2.t.d.361.1 4
39.38 odd 2 6084.2.a.bd.1.4 4
52.7 even 12 624.2.bv.f.49.2 4
52.15 even 12 624.2.bv.f.433.1 4
52.51 odd 2 8112.2.a.cr.1.1 4
65.2 even 12 3900.2.bw.j.2149.4 8
65.7 even 12 3900.2.bw.j.49.1 8
65.28 even 12 3900.2.bw.j.2149.1 8
65.33 even 12 3900.2.bw.j.49.4 8
65.54 odd 12 3900.2.cd.i.901.1 4
65.59 odd 12 3900.2.cd.i.2701.1 4
156.59 odd 12 1872.2.by.j.1297.1 4
156.119 odd 12 1872.2.by.j.433.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.q.b.49.2 4 13.7 odd 12
156.2.q.b.121.1 yes 4 13.2 odd 12
468.2.t.d.361.1 4 39.20 even 12
468.2.t.d.433.2 4 39.2 even 12
624.2.bv.f.49.2 4 52.7 even 12
624.2.bv.f.433.1 4 52.15 even 12
1872.2.by.j.433.2 4 156.119 odd 12
1872.2.by.j.1297.1 4 156.59 odd 12
2028.2.a.m.1.1 4 13.12 even 2 inner
2028.2.a.m.1.4 4 1.1 even 1 trivial
2028.2.b.e.337.1 4 13.5 odd 4
2028.2.b.e.337.4 4 13.8 odd 4
2028.2.i.n.529.1 8 13.10 even 6
2028.2.i.n.529.4 8 13.3 even 3
2028.2.i.n.2005.1 8 13.4 even 6
2028.2.i.n.2005.4 8 13.9 even 3
2028.2.q.f.361.1 4 13.6 odd 12
2028.2.q.f.1837.2 4 13.11 odd 12
3900.2.bw.j.49.1 8 65.7 even 12
3900.2.bw.j.49.4 8 65.33 even 12
3900.2.bw.j.2149.1 8 65.28 even 12
3900.2.bw.j.2149.4 8 65.2 even 12
3900.2.cd.i.901.1 4 65.54 odd 12
3900.2.cd.i.2701.1 4 65.59 odd 12
6084.2.a.bd.1.1 4 3.2 odd 2
6084.2.a.bd.1.4 4 39.38 odd 2
6084.2.b.o.4393.1 4 39.8 even 4
6084.2.b.o.4393.4 4 39.5 even 4
8112.2.a.cr.1.1 4 52.51 odd 2
8112.2.a.cr.1.4 4 4.3 odd 2