Properties

Label 2-200-5.4-c7-0-9
Degree $2$
Conductor $200$
Sign $-0.447 + 0.894i$
Analytic cond. $62.4770$
Root an. cond. $7.90423$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 89.5i·3-s + 1.19e3i·7-s − 5.82e3·9-s + 6.18e3·11-s + 7.65e3i·13-s + 2.97e4i·17-s − 1.02e4·19-s − 1.06e5·21-s + 4.53e4i·23-s − 3.25e5i·27-s − 1.29e5·29-s − 1.46e5·31-s + 5.53e5i·33-s + 1.54e4i·37-s − 6.85e5·39-s + ⋯
L(s)  = 1  + 1.91i·3-s + 1.31i·7-s − 2.66·9-s + 1.40·11-s + 0.966i·13-s + 1.47i·17-s − 0.341·19-s − 2.51·21-s + 0.777i·23-s − 3.18i·27-s − 0.983·29-s − 0.880·31-s + 2.68i·33-s + 0.0502i·37-s − 1.85·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200\)    =    \(2^{3} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(62.4770\)
Root analytic conductor: \(7.90423\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{200} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 200,\ (\ :7/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.675572100\)
\(L(\frac12)\) \(\approx\) \(1.675572100\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 89.5iT - 2.18e3T^{2} \)
7 \( 1 - 1.19e3iT - 8.23e5T^{2} \)
11 \( 1 - 6.18e3T + 1.94e7T^{2} \)
13 \( 1 - 7.65e3iT - 6.27e7T^{2} \)
17 \( 1 - 2.97e4iT - 4.10e8T^{2} \)
19 \( 1 + 1.02e4T + 8.93e8T^{2} \)
23 \( 1 - 4.53e4iT - 3.40e9T^{2} \)
29 \( 1 + 1.29e5T + 1.72e10T^{2} \)
31 \( 1 + 1.46e5T + 2.75e10T^{2} \)
37 \( 1 - 1.54e4iT - 9.49e10T^{2} \)
41 \( 1 - 6.20e5T + 1.94e11T^{2} \)
43 \( 1 - 4.73e5iT - 2.71e11T^{2} \)
47 \( 1 - 2.53e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.14e5iT - 1.17e12T^{2} \)
59 \( 1 - 7.43e5T + 2.48e12T^{2} \)
61 \( 1 - 2.77e6T + 3.14e12T^{2} \)
67 \( 1 + 3.25e6iT - 6.06e12T^{2} \)
71 \( 1 - 4.13e6T + 9.09e12T^{2} \)
73 \( 1 + 3.04e6iT - 1.10e13T^{2} \)
79 \( 1 - 7.39e6T + 1.92e13T^{2} \)
83 \( 1 - 8.03e5iT - 2.71e13T^{2} \)
89 \( 1 + 6.75e6T + 4.42e13T^{2} \)
97 \( 1 - 3.74e5iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49341638131805587041286177357, −10.95096817404246175922164049868, −9.509254417476570336503685608691, −9.259283704952042579695284406752, −8.362240396469841777769957046578, −6.28837985276690116617006553189, −5.50145790640471388813418224259, −4.24586645950244107473115978882, −3.55308740472342209195376665094, −2.00647810383186375285608207577, 0.48257013906717473006626664706, 1.02306186432676175227631380234, 2.36019531924173591080818944951, 3.77252813908133380454118013276, 5.54836281948629796056133090128, 6.80673615413634007653966243818, 7.19225075618947949670320287931, 8.175123906069734972040574564354, 9.323895173678730219771276803776, 10.84583592627256181952099420596

Graph of the $Z$-function along the critical line