L(s) = 1 | + (−0.729 + 0.421i)2-s + (0.866 − 0.5i)3-s + (−0.644 + 1.11i)4-s + (2.23 − 0.0545i)5-s + (−0.421 + 0.729i)6-s + (0.347 + 0.200i)7-s − 2.77i·8-s + (0.499 − 0.866i)9-s + (−1.60 + 0.981i)10-s + (2.45 + 4.24i)11-s + 1.28i·12-s + (−3.55 − 0.572i)13-s − 0.338·14-s + (1.90 − 1.16i)15-s + (−0.121 − 0.211i)16-s + (6.13 + 3.54i)17-s + ⋯ |
L(s) = 1 | + (−0.516 + 0.297i)2-s + (0.499 − 0.288i)3-s + (−0.322 + 0.558i)4-s + (0.999 − 0.0244i)5-s + (−0.172 + 0.297i)6-s + (0.131 + 0.0758i)7-s − 0.980i·8-s + (0.166 − 0.288i)9-s + (−0.508 + 0.310i)10-s + (0.739 + 1.28i)11-s + 0.372i·12-s + (−0.987 − 0.158i)13-s − 0.0903·14-s + (0.492 − 0.300i)15-s + (−0.0304 − 0.0528i)16-s + (1.48 + 0.858i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.792 - 0.610i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.792 - 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09834 + 0.374146i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09834 + 0.374146i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (-2.23 + 0.0545i)T \) |
| 13 | \( 1 + (3.55 + 0.572i)T \) |
good | 2 | \( 1 + (0.729 - 0.421i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.347 - 0.200i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.45 - 4.24i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-6.13 - 3.54i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.12 + 1.95i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.861 - 0.497i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.94 + 6.82i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 6.30T + 31T^{2} \) |
| 37 | \( 1 + (7.62 - 4.40i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.65 + 4.60i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.74 + 1.00i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.62iT - 47T^{2} \) |
| 53 | \( 1 + 10.8iT - 53T^{2} \) |
| 59 | \( 1 + (1.52 - 2.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.55 + 6.15i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.32 - 3.07i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.16 - 5.48i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.01iT - 73T^{2} \) |
| 79 | \( 1 - 10.2T + 79T^{2} \) |
| 83 | \( 1 - 10.5iT - 83T^{2} \) |
| 89 | \( 1 + (-0.262 - 0.454i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (8.15 + 4.71i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.62718170129265330984562732495, −11.99799684843141971615926023862, −9.981345047964544052101062700522, −9.707716701993908903541875405794, −8.626562684173553337671007956957, −7.55147188685797692661391932641, −6.77025582730832670644085645215, −5.20686998284855043147097561209, −3.65585670648722972741573940728, −1.92136138185929465858684980216,
1.51236730318976398783653811484, 3.17537425834857660085146808757, 5.05427129879316551474207113491, 5.89475384049561041256749274495, 7.50475854604963369282572949408, 8.874939170867064790187809301930, 9.402323938312417953354709583258, 10.22660904291063271407300253265, 11.10476324664074627502468176811, 12.34419904315835181694911096567