L(s) = 1 | + (0.0646 − 0.198i)2-s + (0.773 + 0.562i)4-s + (0.809 + 0.587i)7-s + (0.330 − 0.240i)8-s + (0.309 − 0.951i)9-s + (0.669 − 0.743i)11-s + (0.169 − 0.122i)14-s + (0.269 + 0.828i)16-s + (−0.169 − 0.122i)18-s + (−0.104 − 0.181i)22-s − 1.82·23-s + (0.295 + 0.909i)28-s + (−1.08 − 0.786i)29-s + 0.591·32-s + (0.773 − 0.562i)36-s + (−0.169 − 0.122i)37-s + ⋯ |
L(s) = 1 | + (0.0646 − 0.198i)2-s + (0.773 + 0.562i)4-s + (0.809 + 0.587i)7-s + (0.330 − 0.240i)8-s + (0.309 − 0.951i)9-s + (0.669 − 0.743i)11-s + (0.169 − 0.122i)14-s + (0.269 + 0.828i)16-s + (−0.169 − 0.122i)18-s + (−0.104 − 0.181i)22-s − 1.82·23-s + (0.295 + 0.909i)28-s + (−1.08 − 0.786i)29-s + 0.591·32-s + (0.773 − 0.562i)36-s + (−0.169 − 0.122i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.623013209\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.623013209\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
good | 2 | \( 1 + (-0.0646 + 0.198i)T + (-0.809 - 0.587i)T^{2} \) |
| 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + 1.82T + T^{2} \) |
| 29 | \( 1 + (1.08 + 0.786i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.169 + 0.122i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 1.33T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 1.95T + T^{2} \) |
| 71 | \( 1 + (-0.413 - 1.27i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.604 - 1.86i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.382639470732067947904105700279, −8.425896363333458882057320171390, −7.980916233454109023333844894565, −6.96738084142045847892467928814, −6.24277951998147675912961938144, −5.54815344876001850555602288586, −4.13219124570153606557266028032, −3.62794216580748110360600334705, −2.43238771484400248188681301348, −1.47816987759814060082487158590,
1.62460081381029028952870349235, 2.06878594978628535704041965203, 3.69673803620811370277539787954, 4.67337325199179855793790933412, 5.30338822524202034682682786062, 6.31833833565507466033160051518, 7.12062300431098646291229759466, 7.67750040125335758208283979931, 8.377608879511019067208910407267, 9.637545795341655803259449879515