Properties

Label 1925.1.bn.b
Level $1925$
Weight $1$
Character orbit 1925.bn
Analytic conductor $0.961$
Analytic rank $0$
Dimension $8$
Projective image $D_{15}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,1,Mod(251,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.251"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1925.bn (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.960700149319\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{15}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{15} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{30}^{8} + \zeta_{30}) q^{2} + ( - \zeta_{30}^{9} + \zeta_{30}^{2} - \zeta_{30}) q^{4} + \zeta_{30}^{9} q^{7} + ( - \zeta_{30}^{10} + \cdots - \zeta_{30}^{2}) q^{8} + \zeta_{30}^{12} q^{9}+ \cdots + \zeta_{30}^{10} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{7} + 7 q^{8} - 2 q^{9} + q^{11} - 3 q^{14} - 3 q^{16} + 3 q^{18} + q^{22} - 2 q^{23} + 5 q^{28} + 2 q^{29} + 10 q^{32} + 3 q^{37} - 2 q^{43} + 10 q^{44} + 8 q^{46} - 2 q^{49} - 6 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1925\mathbb{Z}\right)^\times\).

\(n\) \(276\) \(1002\) \(1751\)
\(\chi(n)\) \(-1\) \(1\) \(-\zeta_{30}^{9}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−0.104528 0.994522i
0.913545 + 0.406737i
−0.104528 + 0.994522i
0.913545 0.406737i
0.669131 + 0.743145i
−0.978148 + 0.207912i
0.669131 0.743145i
−0.978148 0.207912i
−0.564602 + 1.73767i 0 −1.89169 1.37440i 0 0 0.809017 + 0.587785i 1.97815 1.43721i 0.309017 0.951057i 0
251.2 0.0646021 0.198825i 0 0.773659 + 0.562096i 0 0 0.809017 + 0.587785i 0.330869 0.240391i 0.309017 0.951057i 0
951.1 −0.564602 1.73767i 0 −1.89169 + 1.37440i 0 0 0.809017 0.587785i 1.97815 + 1.43721i 0.309017 + 0.951057i 0
951.2 0.0646021 + 0.198825i 0 0.773659 0.562096i 0 0 0.809017 0.587785i 0.330869 + 0.240391i 0.309017 + 0.951057i 0
1126.1 −1.58268 1.14988i 0 0.873619 + 2.68872i 0 0 −0.309017 0.951057i 1.10453 3.39939i −0.809017 0.587785i 0
1126.2 1.08268 + 0.786610i 0 0.244415 + 0.752232i 0 0 −0.309017 0.951057i 0.0864545 0.266080i −0.809017 0.587785i 0
1301.1 −1.58268 + 1.14988i 0 0.873619 2.68872i 0 0 −0.309017 + 0.951057i 1.10453 + 3.39939i −0.809017 + 0.587785i 0
1301.2 1.08268 0.786610i 0 0.244415 0.752232i 0 0 −0.309017 + 0.951057i 0.0864545 + 0.266080i −0.809017 + 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 251.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
11.c even 5 1 inner
77.j odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1925.1.bn.b 8
5.b even 2 1 1925.1.bn.d yes 8
5.c odd 4 2 1925.1.cb.b 16
7.b odd 2 1 CM 1925.1.bn.b 8
11.c even 5 1 inner 1925.1.bn.b 8
35.c odd 2 1 1925.1.bn.d yes 8
35.f even 4 2 1925.1.cb.b 16
55.j even 10 1 1925.1.bn.d yes 8
55.k odd 20 2 1925.1.cb.b 16
77.j odd 10 1 inner 1925.1.bn.b 8
385.y odd 10 1 1925.1.bn.d yes 8
385.bk even 20 2 1925.1.cb.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1925.1.bn.b 8 1.a even 1 1 trivial
1925.1.bn.b 8 7.b odd 2 1 CM
1925.1.bn.b 8 11.c even 5 1 inner
1925.1.bn.b 8 77.j odd 10 1 inner
1925.1.bn.d yes 8 5.b even 2 1
1925.1.bn.d yes 8 35.c odd 2 1
1925.1.bn.d yes 8 55.j even 10 1
1925.1.bn.d yes 8 385.y odd 10 1
1925.1.cb.b 16 5.c odd 4 2
1925.1.cb.b 16 35.f even 4 2
1925.1.cb.b 16 55.k odd 20 2
1925.1.cb.b 16 385.bk even 20 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} + 2T_{2}^{7} + 3T_{2}^{6} - T_{2}^{5} - T_{2}^{3} + 23T_{2}^{2} - 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1925, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - T^{7} + T^{5} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} - 2 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} + 3 T^{3} + 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + T^{3} - 4 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + 3 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less