Properties

Label 2-190-1.1-c3-0-17
Degree $2$
Conductor $190$
Sign $-1$
Analytic cond. $11.2103$
Root an. cond. $3.34818$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 0.296·3-s + 4·4-s − 5·5-s + 0.592·6-s − 21.3·7-s + 8·8-s − 26.9·9-s − 10·10-s − 65.5·11-s + 1.18·12-s − 0.271·13-s − 42.6·14-s − 1.48·15-s + 16·16-s + 132.·17-s − 53.8·18-s − 19·19-s − 20·20-s − 6.31·21-s − 131.·22-s − 142.·23-s + 2.36·24-s + 25·25-s − 0.542·26-s − 15.9·27-s − 85.2·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.0569·3-s + 0.5·4-s − 0.447·5-s + 0.0403·6-s − 1.15·7-s + 0.353·8-s − 0.996·9-s − 0.316·10-s − 1.79·11-s + 0.0284·12-s − 0.00578·13-s − 0.814·14-s − 0.0254·15-s + 0.250·16-s + 1.89·17-s − 0.704·18-s − 0.229·19-s − 0.223·20-s − 0.0656·21-s − 1.27·22-s − 1.29·23-s + 0.0201·24-s + 0.200·25-s − 0.00408·26-s − 0.113·27-s − 0.575·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190\)    =    \(2 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(11.2103\)
Root analytic conductor: \(3.34818\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 + 5T \)
19 \( 1 + 19T \)
good3 \( 1 - 0.296T + 27T^{2} \)
7 \( 1 + 21.3T + 343T^{2} \)
11 \( 1 + 65.5T + 1.33e3T^{2} \)
13 \( 1 + 0.271T + 2.19e3T^{2} \)
17 \( 1 - 132.T + 4.91e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 + 83.9T + 2.43e4T^{2} \)
31 \( 1 - 173.T + 2.97e4T^{2} \)
37 \( 1 + 433.T + 5.06e4T^{2} \)
41 \( 1 - 113.T + 6.89e4T^{2} \)
43 \( 1 - 258.T + 7.95e4T^{2} \)
47 \( 1 + 285.T + 1.03e5T^{2} \)
53 \( 1 - 290.T + 1.48e5T^{2} \)
59 \( 1 - 184.T + 2.05e5T^{2} \)
61 \( 1 - 63.6T + 2.26e5T^{2} \)
67 \( 1 + 1.02e3T + 3.00e5T^{2} \)
71 \( 1 + 329.T + 3.57e5T^{2} \)
73 \( 1 - 609.T + 3.89e5T^{2} \)
79 \( 1 - 970.T + 4.93e5T^{2} \)
83 \( 1 + 370.T + 5.71e5T^{2} \)
89 \( 1 + 1.46e3T + 7.04e5T^{2} \)
97 \( 1 + 580.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.92941000245895948639191161844, −10.62509361943127686838005164105, −9.893982389106184268672414672747, −8.313019769084536360193690639892, −7.49070531765642687188640723413, −6.04717505110430014358531778979, −5.26896084599482377731742830053, −3.56849576034648849055173411339, −2.70514652014912167584210517812, 0, 2.70514652014912167584210517812, 3.56849576034648849055173411339, 5.26896084599482377731742830053, 6.04717505110430014358531778979, 7.49070531765642687188640723413, 8.313019769084536360193690639892, 9.893982389106184268672414672747, 10.62509361943127686838005164105, 11.92941000245895948639191161844

Graph of the $Z$-function along the critical line