Properties

Label 2-1872-1.1-c3-0-1
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.67·5-s − 22.9·7-s − 32.5·11-s − 13·13-s − 107.·17-s − 116.·19-s − 65.1·23-s − 92.7·25-s − 92.5·29-s − 51.1·31-s + 130.·35-s + 267.·37-s + 392.·41-s − 317.·43-s − 114.·47-s + 184.·49-s + 618·53-s + 184.·55-s − 600.·59-s − 857.·61-s + 73.7·65-s − 422.·67-s − 428.·71-s − 220.·73-s + 748.·77-s + 235.·79-s + 64.3·83-s + ⋯
L(s)  = 1  − 0.507·5-s − 1.24·7-s − 0.893·11-s − 0.277·13-s − 1.53·17-s − 1.41·19-s − 0.591·23-s − 0.742·25-s − 0.592·29-s − 0.296·31-s + 0.629·35-s + 1.18·37-s + 1.49·41-s − 1.12·43-s − 0.356·47-s + 0.538·49-s + 1.60·53-s + 0.453·55-s − 1.32·59-s − 1.79·61-s + 0.140·65-s − 0.769·67-s − 0.716·71-s − 0.353·73-s + 1.10·77-s + 0.335·79-s + 0.0851·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1196544793\)
\(L(\frac12)\) \(\approx\) \(0.1196544793\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + 13T \)
good5 \( 1 + 5.67T + 125T^{2} \)
7 \( 1 + 22.9T + 343T^{2} \)
11 \( 1 + 32.5T + 1.33e3T^{2} \)
17 \( 1 + 107.T + 4.91e3T^{2} \)
19 \( 1 + 116.T + 6.85e3T^{2} \)
23 \( 1 + 65.1T + 1.21e4T^{2} \)
29 \( 1 + 92.5T + 2.43e4T^{2} \)
31 \( 1 + 51.1T + 2.97e4T^{2} \)
37 \( 1 - 267.T + 5.06e4T^{2} \)
41 \( 1 - 392.T + 6.89e4T^{2} \)
43 \( 1 + 317.T + 7.95e4T^{2} \)
47 \( 1 + 114.T + 1.03e5T^{2} \)
53 \( 1 - 618T + 1.48e5T^{2} \)
59 \( 1 + 600.T + 2.05e5T^{2} \)
61 \( 1 + 857.T + 2.26e5T^{2} \)
67 \( 1 + 422.T + 3.00e5T^{2} \)
71 \( 1 + 428.T + 3.57e5T^{2} \)
73 \( 1 + 220.T + 3.89e5T^{2} \)
79 \( 1 - 235.T + 4.93e5T^{2} \)
83 \( 1 - 64.3T + 5.71e5T^{2} \)
89 \( 1 - 1.07e3T + 7.04e5T^{2} \)
97 \( 1 + 703.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.942155868486544380809351552160, −8.034909988727955804996373449157, −7.33758244260778956653882935227, −6.41375570647146579173167447691, −5.88973269720466161691608412312, −4.58896235578791201598832811721, −3.97143395146052740524719131118, −2.87289498792147773975042770647, −2.06898921329447636407730059117, −0.14842948319467762912087656992, 0.14842948319467762912087656992, 2.06898921329447636407730059117, 2.87289498792147773975042770647, 3.97143395146052740524719131118, 4.58896235578791201598832811721, 5.88973269720466161691608412312, 6.41375570647146579173167447691, 7.33758244260778956653882935227, 8.034909988727955804996373449157, 8.942155868486544380809351552160

Graph of the $Z$-function along the critical line