Properties

Label 1872.4.a.s
Level $1872$
Weight $4$
Character orbit 1872.a
Self dual yes
Analytic conductor $110.452$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,4,Mod(1,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-24,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 12) q^{5} + ( - 3 \beta - 4) q^{7} + ( - 8 \beta + 18) q^{11} - 13 q^{13} + ( - 18 \beta + 6) q^{17} + ( - 9 \beta - 60) q^{19} + ( - 16 \beta + 36) q^{23} + ( - 24 \beta + 59) q^{25} + ( - 8 \beta - 42) q^{29}+ \cdots + ( - 102 \beta - 58) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 24 q^{5} - 8 q^{7} + 36 q^{11} - 26 q^{13} + 12 q^{17} - 120 q^{19} + 72 q^{23} + 118 q^{25} - 84 q^{29} - 368 q^{31} - 144 q^{35} + 156 q^{37} + 216 q^{41} - 104 q^{43} - 660 q^{47} + 66 q^{49} + 1236 q^{53}+ \cdots - 116 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.16228
3.16228
0 0 0 −18.3246 0 14.9737 0 0 0
1.2 0 0 0 −5.67544 0 −22.9737 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.4.a.s 2
3.b odd 2 1 624.4.a.m 2
4.b odd 2 1 468.4.a.d 2
12.b even 2 1 156.4.a.d 2
24.f even 2 1 2496.4.a.t 2
24.h odd 2 1 2496.4.a.bb 2
156.h even 2 1 2028.4.a.e 2
156.l odd 4 2 2028.4.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.a.d 2 12.b even 2 1
468.4.a.d 2 4.b odd 2 1
624.4.a.m 2 3.b odd 2 1
1872.4.a.s 2 1.a even 1 1 trivial
2028.4.a.e 2 156.h even 2 1
2028.4.b.f 4 156.l odd 4 2
2496.4.a.t 2 24.f even 2 1
2496.4.a.bb 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1872))\):

\( T_{5}^{2} + 24T_{5} + 104 \) Copy content Toggle raw display
\( T_{7}^{2} + 8T_{7} - 344 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 24T + 104 \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 344 \) Copy content Toggle raw display
$11$ \( T^{2} - 36T - 2236 \) Copy content Toggle raw display
$13$ \( (T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 12T - 12924 \) Copy content Toggle raw display
$19$ \( T^{2} + 120T + 360 \) Copy content Toggle raw display
$23$ \( T^{2} - 72T - 8944 \) Copy content Toggle raw display
$29$ \( T^{2} + 84T - 796 \) Copy content Toggle raw display
$31$ \( T^{2} + 368T + 16216 \) Copy content Toggle raw display
$37$ \( T^{2} - 156T - 29916 \) Copy content Toggle raw display
$41$ \( T^{2} - 216T - 69336 \) Copy content Toggle raw display
$43$ \( T^{2} + 104T - 67856 \) Copy content Toggle raw display
$47$ \( T^{2} + 660T + 62660 \) Copy content Toggle raw display
$53$ \( (T - 618)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 468T - 79804 \) Copy content Toggle raw display
$61$ \( T^{2} + 652T - 175964 \) Copy content Toggle raw display
$67$ \( T^{2} - 256T - 286376 \) Copy content Toggle raw display
$71$ \( T^{2} + 756T + 140324 \) Copy content Toggle raw display
$73$ \( T^{2} + 1124 T + 199204 \) Copy content Toggle raw display
$79$ \( T^{2} - 320T + 19840 \) Copy content Toggle raw display
$83$ \( T^{2} - 660T + 38340 \) Copy content Toggle raw display
$89$ \( T^{2} - 2112 T + 1114776 \) Copy content Toggle raw display
$97$ \( T^{2} + 116T - 412796 \) Copy content Toggle raw display
show more
show less