Properties

Label 2-1872-1.1-c3-0-59
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.90·5-s − 36.4·7-s + 19.1·11-s + 13·13-s + 83.8·17-s − 46.8·19-s + 103.·23-s − 109.·25-s − 108.·29-s + 147.·31-s − 142.·35-s − 160.·37-s − 231.·41-s + 340.·43-s + 119.·47-s + 982.·49-s + 732.·53-s + 75.0·55-s − 229.·59-s + 108.·61-s + 50.8·65-s − 10.3·67-s − 869.·71-s − 1.09e3·73-s − 698.·77-s − 140.·79-s − 159.·83-s + ⋯
L(s)  = 1  + 0.349·5-s − 1.96·7-s + 0.526·11-s + 0.277·13-s + 1.19·17-s − 0.565·19-s + 0.941·23-s − 0.877·25-s − 0.693·29-s + 0.854·31-s − 0.687·35-s − 0.710·37-s − 0.881·41-s + 1.20·43-s + 0.371·47-s + 2.86·49-s + 1.89·53-s + 0.183·55-s − 0.507·59-s + 0.228·61-s + 0.0969·65-s − 0.0189·67-s − 1.45·71-s − 1.76·73-s − 1.03·77-s − 0.199·79-s − 0.210·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 3.90T + 125T^{2} \)
7 \( 1 + 36.4T + 343T^{2} \)
11 \( 1 - 19.1T + 1.33e3T^{2} \)
17 \( 1 - 83.8T + 4.91e3T^{2} \)
19 \( 1 + 46.8T + 6.85e3T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 + 108.T + 2.43e4T^{2} \)
31 \( 1 - 147.T + 2.97e4T^{2} \)
37 \( 1 + 160.T + 5.06e4T^{2} \)
41 \( 1 + 231.T + 6.89e4T^{2} \)
43 \( 1 - 340.T + 7.95e4T^{2} \)
47 \( 1 - 119.T + 1.03e5T^{2} \)
53 \( 1 - 732.T + 1.48e5T^{2} \)
59 \( 1 + 229.T + 2.05e5T^{2} \)
61 \( 1 - 108.T + 2.26e5T^{2} \)
67 \( 1 + 10.3T + 3.00e5T^{2} \)
71 \( 1 + 869.T + 3.57e5T^{2} \)
73 \( 1 + 1.09e3T + 3.89e5T^{2} \)
79 \( 1 + 140.T + 4.93e5T^{2} \)
83 \( 1 + 159.T + 5.71e5T^{2} \)
89 \( 1 + 1.06e3T + 7.04e5T^{2} \)
97 \( 1 - 858.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.784209465279355539943856661142, −7.50982501905937034483152952626, −6.82629870904303529877404574461, −6.06665053644022744229175512808, −5.54094773128734046419751771206, −4.10833508013850964561995650852, −3.40299996705130014780256046101, −2.57854078971587699878482642571, −1.17744467931919439060638322661, 0, 1.17744467931919439060638322661, 2.57854078971587699878482642571, 3.40299996705130014780256046101, 4.10833508013850964561995650852, 5.54094773128734046419751771206, 6.06665053644022744229175512808, 6.82629870904303529877404574461, 7.50982501905937034483152952626, 8.784209465279355539943856661142

Graph of the $Z$-function along the critical line