Properties

Label 1872.4.a.bk
Level $1872$
Weight $4$
Character orbit 1872.a
Self dual yes
Analytic conductor $110.452$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1872,4,Mod(1,1872)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1872, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1872.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1872.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-4,0,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.451575531\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{5} + ( - 3 \beta_1 - 11) q^{7} + (3 \beta_{2} + \beta_1 - 4) q^{11} + 13 q^{13} + (4 \beta_1 + 50) q^{17} + ( - 8 \beta_{2} + 3 \beta_1 - 33) q^{19} + ( - 4 \beta_{2} + 16 \beta_1 - 12) q^{23}+ \cdots + ( - 2 \beta_{2} - 24 \beta_1 + 1072) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{5} - 30 q^{7} - 16 q^{11} + 39 q^{13} + 146 q^{17} - 94 q^{19} - 48 q^{23} + 145 q^{25} + 2 q^{29} - 302 q^{31} + 80 q^{35} + 374 q^{37} - 480 q^{41} + 260 q^{43} - 24 q^{47} + 447 q^{49} + 678 q^{53}+ \cdots + 3242 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 16x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 23 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.526440
4.73549
−3.20905
0 0 0 −19.3400 0 −4.84136 0 0 0
1.2 0 0 0 3.90776 0 −36.4129 0 0 0
1.3 0 0 0 11.4322 0 11.2543 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1872.4.a.bk 3
3.b odd 2 1 624.4.a.t 3
4.b odd 2 1 117.4.a.f 3
12.b even 2 1 39.4.a.c 3
24.f even 2 1 2496.4.a.bl 3
24.h odd 2 1 2496.4.a.bp 3
52.b odd 2 1 1521.4.a.u 3
60.h even 2 1 975.4.a.l 3
84.h odd 2 1 1911.4.a.k 3
156.h even 2 1 507.4.a.h 3
156.l odd 4 2 507.4.b.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.c 3 12.b even 2 1
117.4.a.f 3 4.b odd 2 1
507.4.a.h 3 156.h even 2 1
507.4.b.g 6 156.l odd 4 2
624.4.a.t 3 3.b odd 2 1
975.4.a.l 3 60.h even 2 1
1521.4.a.u 3 52.b odd 2 1
1872.4.a.bk 3 1.a even 1 1 trivial
1911.4.a.k 3 84.h odd 2 1
2496.4.a.bl 3 24.f even 2 1
2496.4.a.bp 3 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1872))\):

\( T_{5}^{3} + 4T_{5}^{2} - 252T_{5} + 864 \) Copy content Toggle raw display
\( T_{7}^{3} + 30T_{7}^{2} - 288T_{7} - 1984 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 4 T^{2} + \cdots + 864 \) Copy content Toggle raw display
$7$ \( T^{3} + 30 T^{2} + \cdots - 1984 \) Copy content Toggle raw display
$11$ \( T^{3} + 16 T^{2} + \cdots + 30336 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 146 T^{2} + \cdots - 71256 \) Copy content Toggle raw display
$19$ \( T^{3} + 94 T^{2} + \cdots - 779616 \) Copy content Toggle raw display
$23$ \( T^{3} + 48 T^{2} + \cdots + 534528 \) Copy content Toggle raw display
$29$ \( T^{3} - 2 T^{2} + \cdots + 199176 \) Copy content Toggle raw display
$31$ \( T^{3} + 302 T^{2} + \cdots - 7197248 \) Copy content Toggle raw display
$37$ \( T^{3} - 374 T^{2} + \cdots + 7758104 \) Copy content Toggle raw display
$41$ \( T^{3} + 480 T^{2} + \cdots - 12919824 \) Copy content Toggle raw display
$43$ \( T^{3} - 260 T^{2} + \cdots + 3663168 \) Copy content Toggle raw display
$47$ \( T^{3} + 24 T^{2} + \cdots + 18102528 \) Copy content Toggle raw display
$53$ \( T^{3} - 678 T^{2} + \cdots + 1471608 \) Copy content Toggle raw display
$59$ \( T^{3} + 1788 T^{2} + \cdots + 137423808 \) Copy content Toggle raw display
$61$ \( T^{3} - 230 T^{2} + \cdots + 6279512 \) Copy content Toggle raw display
$67$ \( T^{3} + 74 T^{2} + \cdots - 4260896 \) Copy content Toggle raw display
$71$ \( T^{3} + 948 T^{2} + \cdots - 70464384 \) Copy content Toggle raw display
$73$ \( T^{3} + 222 T^{2} + \cdots + 22780552 \) Copy content Toggle raw display
$79$ \( T^{3} - 24 T^{2} + \cdots - 7757824 \) Copy content Toggle raw display
$83$ \( T^{3} + 796 T^{2} + \cdots + 13963968 \) Copy content Toggle raw display
$89$ \( T^{3} + 1436 T^{2} + \cdots + 30129888 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 1218481048 \) Copy content Toggle raw display
show more
show less