L(s) = 1 | + (−1.97 − 0.327i)2-s + 2.30·3-s + (3.78 + 1.29i)4-s − 6.63i·5-s + (−4.55 − 0.756i)6-s − 5.68i·7-s + (−7.04 − 3.79i)8-s − 3.67·9-s + (−2.17 + 13.0i)10-s − 6.58·11-s + (8.73 + 2.98i)12-s − 1.70i·13-s + (−1.86 + 11.2i)14-s − 15.3i·15-s + (12.6 + 9.78i)16-s − 15.6·17-s + ⋯ |
L(s) = 1 | + (−0.986 − 0.163i)2-s + 0.769·3-s + (0.946 + 0.323i)4-s − 1.32i·5-s + (−0.759 − 0.126i)6-s − 0.812i·7-s + (−0.880 − 0.473i)8-s − 0.407·9-s + (−0.217 + 1.30i)10-s − 0.598·11-s + (0.728 + 0.248i)12-s − 0.130i·13-s + (−0.133 + 0.801i)14-s − 1.02i·15-s + (0.791 + 0.611i)16-s − 0.922·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.473 + 0.880i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.473 + 0.880i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.500329 - 0.837436i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.500329 - 0.837436i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.97 + 0.327i)T \) |
| 23 | \( 1 - 4.79iT \) |
good | 3 | \( 1 - 2.30T + 9T^{2} \) |
| 5 | \( 1 + 6.63iT - 25T^{2} \) |
| 7 | \( 1 + 5.68iT - 49T^{2} \) |
| 11 | \( 1 + 6.58T + 121T^{2} \) |
| 13 | \( 1 + 1.70iT - 169T^{2} \) |
| 17 | \( 1 + 15.6T + 289T^{2} \) |
| 19 | \( 1 - 17.3T + 361T^{2} \) |
| 29 | \( 1 + 28.8iT - 841T^{2} \) |
| 31 | \( 1 + 42.9iT - 961T^{2} \) |
| 37 | \( 1 - 21.2iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 67.2T + 1.68e3T^{2} \) |
| 43 | \( 1 - 45.7T + 1.84e3T^{2} \) |
| 47 | \( 1 + 81.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 66.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 34.9T + 3.48e3T^{2} \) |
| 61 | \( 1 - 61.7iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 8.27T + 4.48e3T^{2} \) |
| 71 | \( 1 + 53.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 59.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 44.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 48.5T + 6.88e3T^{2} \) |
| 89 | \( 1 - 32.7T + 7.92e3T^{2} \) |
| 97 | \( 1 + 132.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93359111634804941340963229917, −10.95822213314005636169331387358, −9.739224495087695054814660148016, −9.023559063832599887314467616007, −8.143801290697107906178059231347, −7.43124858620452939664557119039, −5.73170046217235626592049537323, −4.08083957937501845952898995081, −2.45412255638973998712623397762, −0.69533383982255866727368590884,
2.36344695028325743021822712470, 3.08742214831121804811788616507, 5.61460532644938948000880536921, 6.77455780284928525168718305116, 7.71341799577926818633858855650, 8.744399890784124980696863059058, 9.499955167145781039448027553398, 10.74331758215693856377504827423, 11.28080281055456206427157936328, 12.55876567770744036800052251539