Properties

Label 184.3.g.a.139.1
Level $184$
Weight $3$
Character 184.139
Analytic conductor $5.014$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,3,Mod(139,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.139"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 184.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.01363686423\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.1
Character \(\chi\) \(=\) 184.139
Dual form 184.3.g.a.139.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.97298 - 0.327653i) q^{2} +2.30854 q^{3} +(3.78529 + 1.29291i) q^{4} -6.63468i q^{5} +(-4.55469 - 0.756400i) q^{6} -5.68430i q^{7} +(-7.04466 - 3.79114i) q^{8} -3.67066 q^{9} +(-2.17387 + 13.0901i) q^{10} -6.58413 q^{11} +(8.73847 + 2.98472i) q^{12} -1.70195i q^{13} +(-1.86248 + 11.2150i) q^{14} -15.3164i q^{15} +(12.6568 + 9.78804i) q^{16} -15.6775 q^{17} +(7.24213 + 1.20270i) q^{18} +17.3471 q^{19} +(8.57802 - 25.1142i) q^{20} -13.1224i q^{21} +(12.9903 + 2.15731i) q^{22} +4.79583i q^{23} +(-16.2629 - 8.75198i) q^{24} -19.0190 q^{25} +(-0.557651 + 3.35792i) q^{26} -29.2507 q^{27} +(7.34926 - 21.5167i) q^{28} -28.8048i q^{29} +(-5.01847 + 30.2189i) q^{30} -42.9453i q^{31} +(-21.7645 - 23.4586i) q^{32} -15.1997 q^{33} +(30.9315 + 5.13680i) q^{34} -37.7135 q^{35} +(-13.8945 - 4.74582i) q^{36} +21.2861i q^{37} +(-34.2254 - 5.68383i) q^{38} -3.92902i q^{39} +(-25.1530 + 46.7391i) q^{40} +67.2750 q^{41} +(-4.29960 + 25.8902i) q^{42} +45.7078 q^{43} +(-24.9228 - 8.51266i) q^{44} +24.3536i q^{45} +(1.57137 - 9.46207i) q^{46} -81.7755i q^{47} +(29.2187 + 22.5960i) q^{48} +16.6888 q^{49} +(37.5240 + 6.23163i) q^{50} -36.1922 q^{51} +(2.20046 - 6.44238i) q^{52} +66.7853i q^{53} +(57.7110 + 9.58408i) q^{54} +43.6836i q^{55} +(-21.5500 + 40.0440i) q^{56} +40.0464 q^{57} +(-9.43798 + 56.8312i) q^{58} +34.9065 q^{59} +(19.8027 - 57.9770i) q^{60} +61.7559i q^{61} +(-14.0712 + 84.7301i) q^{62} +20.8651i q^{63} +(35.2546 + 53.4146i) q^{64} -11.2919 q^{65} +(29.9887 + 4.98023i) q^{66} +8.27021 q^{67} +(-59.3440 - 20.2696i) q^{68} +11.0714i q^{69} +(74.4079 + 12.3570i) q^{70} -53.7902i q^{71} +(25.8586 + 13.9160i) q^{72} +59.7633 q^{73} +(6.97446 - 41.9970i) q^{74} -43.9060 q^{75} +(65.6637 + 22.4282i) q^{76} +37.4261i q^{77} +(-1.28736 + 7.75187i) q^{78} +44.7927i q^{79} +(64.9405 - 83.9737i) q^{80} -34.4903 q^{81} +(-132.732 - 22.0429i) q^{82} -48.5204 q^{83} +(16.9660 - 49.6721i) q^{84} +104.015i q^{85} +(-90.1804 - 14.9763i) q^{86} -66.4968i q^{87} +(46.3830 + 24.9613i) q^{88} +32.7845 q^{89} +(7.97956 - 48.0492i) q^{90} -9.67441 q^{91} +(-6.20056 + 18.1536i) q^{92} -99.1408i q^{93} +(-26.7940 + 161.341i) q^{94} -115.092i q^{95} +(-50.2441 - 54.1551i) q^{96} -132.916 q^{97} +(-32.9265 - 5.46813i) q^{98} +24.1681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 3 q^{6} + 15 q^{8} + 132 q^{9} + 26 q^{10} - 19 q^{12} - 8 q^{14} - 16 q^{16} - 8 q^{17} - 57 q^{18} + 40 q^{20} + 44 q^{22} - 88 q^{24} - 244 q^{25} + 19 q^{26} - 48 q^{27} + 6 q^{28} + 86 q^{30}+ \cdots + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.97298 0.327653i −0.986489 0.163827i
\(3\) 2.30854 0.769512 0.384756 0.923018i \(-0.374286\pi\)
0.384756 + 0.923018i \(0.374286\pi\)
\(4\) 3.78529 + 1.29291i 0.946322 + 0.323227i
\(5\) 6.63468i 1.32694i −0.748205 0.663468i \(-0.769084\pi\)
0.748205 0.663468i \(-0.230916\pi\)
\(6\) −4.55469 0.756400i −0.759115 0.126067i
\(7\) 5.68430i 0.812043i −0.913864 0.406021i \(-0.866916\pi\)
0.913864 0.406021i \(-0.133084\pi\)
\(8\) −7.04466 3.79114i −0.880583 0.473892i
\(9\) −3.67066 −0.407851
\(10\) −2.17387 + 13.0901i −0.217387 + 1.30901i
\(11\) −6.58413 −0.598557 −0.299278 0.954166i \(-0.596746\pi\)
−0.299278 + 0.954166i \(0.596746\pi\)
\(12\) 8.73847 + 2.98472i 0.728206 + 0.248727i
\(13\) 1.70195i 0.130919i −0.997855 0.0654597i \(-0.979149\pi\)
0.997855 0.0654597i \(-0.0208514\pi\)
\(14\) −1.86248 + 11.2150i −0.133034 + 0.801071i
\(15\) 15.3164i 1.02109i
\(16\) 12.6568 + 9.78804i 0.791049 + 0.611752i
\(17\) −15.6775 −0.922209 −0.461104 0.887346i \(-0.652547\pi\)
−0.461104 + 0.887346i \(0.652547\pi\)
\(18\) 7.24213 + 1.20270i 0.402341 + 0.0668169i
\(19\) 17.3471 0.913004 0.456502 0.889722i \(-0.349102\pi\)
0.456502 + 0.889722i \(0.349102\pi\)
\(20\) 8.57802 25.1142i 0.428901 1.25571i
\(21\) 13.1224i 0.624877i
\(22\) 12.9903 + 2.15731i 0.590470 + 0.0980596i
\(23\) 4.79583i 0.208514i
\(24\) −16.2629 8.75198i −0.677619 0.364666i
\(25\) −19.0190 −0.760758
\(26\) −0.557651 + 3.35792i −0.0214481 + 0.129151i
\(27\) −29.2507 −1.08336
\(28\) 7.34926 21.5167i 0.262474 0.768454i
\(29\) 28.8048i 0.993268i −0.867960 0.496634i \(-0.834569\pi\)
0.867960 0.496634i \(-0.165431\pi\)
\(30\) −5.01847 + 30.2189i −0.167282 + 1.00730i
\(31\) 42.9453i 1.38533i −0.721259 0.692666i \(-0.756436\pi\)
0.721259 0.692666i \(-0.243564\pi\)
\(32\) −21.7645 23.4586i −0.680140 0.733082i
\(33\) −15.1997 −0.460597
\(34\) 30.9315 + 5.13680i 0.909749 + 0.151082i
\(35\) −37.7135 −1.07753
\(36\) −13.8945 4.74582i −0.385958 0.131828i
\(37\) 21.2861i 0.575299i 0.957736 + 0.287650i \(0.0928739\pi\)
−0.957736 + 0.287650i \(0.907126\pi\)
\(38\) −34.2254 5.68383i −0.900669 0.149575i
\(39\) 3.92902i 0.100744i
\(40\) −25.1530 + 46.7391i −0.628824 + 1.16848i
\(41\) 67.2750 1.64085 0.820427 0.571752i \(-0.193736\pi\)
0.820427 + 0.571752i \(0.193736\pi\)
\(42\) −4.29960 + 25.8902i −0.102371 + 0.616434i
\(43\) 45.7078 1.06297 0.531486 0.847067i \(-0.321634\pi\)
0.531486 + 0.847067i \(0.321634\pi\)
\(44\) −24.9228 8.51266i −0.566427 0.193469i
\(45\) 24.3536i 0.541192i
\(46\) 1.57137 9.46207i 0.0341602 0.205697i
\(47\) 81.7755i 1.73991i −0.493135 0.869953i \(-0.664149\pi\)
0.493135 0.869953i \(-0.335851\pi\)
\(48\) 29.2187 + 22.5960i 0.608722 + 0.470751i
\(49\) 16.6888 0.340587
\(50\) 37.5240 + 6.23163i 0.750480 + 0.124633i
\(51\) −36.1922 −0.709651
\(52\) 2.20046 6.44238i 0.0423166 0.123892i
\(53\) 66.7853i 1.26010i 0.776555 + 0.630050i \(0.216965\pi\)
−0.776555 + 0.630050i \(0.783035\pi\)
\(54\) 57.7110 + 9.58408i 1.06872 + 0.177483i
\(55\) 43.6836i 0.794247i
\(56\) −21.5500 + 40.0440i −0.384821 + 0.715071i
\(57\) 40.0464 0.702568
\(58\) −9.43798 + 56.8312i −0.162724 + 0.979848i
\(59\) 34.9065 0.591636 0.295818 0.955244i \(-0.404408\pi\)
0.295818 + 0.955244i \(0.404408\pi\)
\(60\) 19.8027 57.9770i 0.330044 0.966283i
\(61\) 61.7559i 1.01239i 0.862419 + 0.506196i \(0.168949\pi\)
−0.862419 + 0.506196i \(0.831051\pi\)
\(62\) −14.0712 + 84.7301i −0.226954 + 1.36661i
\(63\) 20.8651i 0.331192i
\(64\) 35.2546 + 53.4146i 0.550852 + 0.834603i
\(65\) −11.2919 −0.173722
\(66\) 29.9887 + 4.98023i 0.454374 + 0.0754581i
\(67\) 8.27021 0.123436 0.0617180 0.998094i \(-0.480342\pi\)
0.0617180 + 0.998094i \(0.480342\pi\)
\(68\) −59.3440 20.2696i −0.872706 0.298082i
\(69\) 11.0714i 0.160454i
\(70\) 74.4079 + 12.3570i 1.06297 + 0.176528i
\(71\) 53.7902i 0.757609i −0.925477 0.378804i \(-0.876335\pi\)
0.925477 0.378804i \(-0.123665\pi\)
\(72\) 25.8586 + 13.9160i 0.359147 + 0.193277i
\(73\) 59.7633 0.818676 0.409338 0.912383i \(-0.365760\pi\)
0.409338 + 0.912383i \(0.365760\pi\)
\(74\) 6.97446 41.9970i 0.0942494 0.567527i
\(75\) −43.9060 −0.585413
\(76\) 65.6637 + 22.4282i 0.863996 + 0.295107i
\(77\) 37.4261i 0.486054i
\(78\) −1.28736 + 7.75187i −0.0165046 + 0.0993830i
\(79\) 44.7927i 0.566996i 0.958973 + 0.283498i \(0.0914949\pi\)
−0.958973 + 0.283498i \(0.908505\pi\)
\(80\) 64.9405 83.9737i 0.811756 1.04967i
\(81\) −34.4903 −0.425806
\(82\) −132.732 22.0429i −1.61868 0.268816i
\(83\) −48.5204 −0.584583 −0.292291 0.956329i \(-0.594418\pi\)
−0.292291 + 0.956329i \(0.594418\pi\)
\(84\) 16.9660 49.6721i 0.201977 0.591334i
\(85\) 104.015i 1.22371i
\(86\) −90.1804 14.9763i −1.04861 0.174143i
\(87\) 66.4968i 0.764331i
\(88\) 46.3830 + 24.9613i 0.527079 + 0.283651i
\(89\) 32.7845 0.368365 0.184183 0.982892i \(-0.441036\pi\)
0.184183 + 0.982892i \(0.441036\pi\)
\(90\) 7.97956 48.0492i 0.0886617 0.533880i
\(91\) −9.67441 −0.106312
\(92\) −6.20056 + 18.1536i −0.0673974 + 0.197322i
\(93\) 99.1408i 1.06603i
\(94\) −26.7940 + 161.341i −0.285043 + 1.71640i
\(95\) 115.092i 1.21150i
\(96\) −50.2441 54.1551i −0.523376 0.564116i
\(97\) −132.916 −1.37027 −0.685136 0.728415i \(-0.740257\pi\)
−0.685136 + 0.728415i \(0.740257\pi\)
\(98\) −32.9265 5.46813i −0.335985 0.0557972i
\(99\) 24.1681 0.244122
\(100\) −71.9922 24.5897i −0.719922 0.245897i
\(101\) 77.2794i 0.765142i 0.923926 + 0.382571i \(0.124961\pi\)
−0.923926 + 0.382571i \(0.875039\pi\)
\(102\) 71.4064 + 11.8585i 0.700063 + 0.116260i
\(103\) 134.485i 1.30568i −0.757494 0.652842i \(-0.773577\pi\)
0.757494 0.652842i \(-0.226423\pi\)
\(104\) −6.45234 + 11.9897i −0.0620417 + 0.115285i
\(105\) −87.0630 −0.829171
\(106\) 21.8824 131.766i 0.206438 1.24307i
\(107\) 45.2694 0.423079 0.211539 0.977369i \(-0.432152\pi\)
0.211539 + 0.977369i \(0.432152\pi\)
\(108\) −110.722 37.8184i −1.02521 0.350170i
\(109\) 168.137i 1.54254i 0.636509 + 0.771270i \(0.280378\pi\)
−0.636509 + 0.771270i \(0.719622\pi\)
\(110\) 14.3131 86.1867i 0.130119 0.783516i
\(111\) 49.1397i 0.442700i
\(112\) 55.6381 71.9450i 0.496769 0.642366i
\(113\) 27.6380 0.244584 0.122292 0.992494i \(-0.460976\pi\)
0.122292 + 0.992494i \(0.460976\pi\)
\(114\) −79.0106 13.1213i −0.693076 0.115099i
\(115\) 31.8188 0.276685
\(116\) 37.2418 109.034i 0.321050 0.939951i
\(117\) 6.24729i 0.0533956i
\(118\) −68.8698 11.4372i −0.583642 0.0969258i
\(119\) 89.1158i 0.748873i
\(120\) −58.0666 + 107.899i −0.483888 + 0.899157i
\(121\) −77.6493 −0.641730
\(122\) 20.2345 121.843i 0.165857 0.998713i
\(123\) 155.307 1.26266
\(124\) 55.5242 162.560i 0.447776 1.31097i
\(125\) 39.6823i 0.317458i
\(126\) 6.83653 41.1664i 0.0542582 0.326718i
\(127\) 92.6854i 0.729806i −0.931046 0.364903i \(-0.881102\pi\)
0.931046 0.364903i \(-0.118898\pi\)
\(128\) −52.0550 116.937i −0.406680 0.913571i
\(129\) 105.518 0.817969
\(130\) 22.2787 + 3.69983i 0.171375 + 0.0284602i
\(131\) −66.9005 −0.510691 −0.255346 0.966850i \(-0.582189\pi\)
−0.255346 + 0.966850i \(0.582189\pi\)
\(132\) −57.5352 19.6518i −0.435873 0.148877i
\(133\) 98.6060i 0.741399i
\(134\) −16.3170 2.70976i −0.121768 0.0202221i
\(135\) 194.069i 1.43755i
\(136\) 110.443 + 59.4357i 0.812081 + 0.437027i
\(137\) 156.575 1.14289 0.571443 0.820642i \(-0.306384\pi\)
0.571443 + 0.820642i \(0.306384\pi\)
\(138\) 3.62757 21.8435i 0.0262867 0.158286i
\(139\) 178.127 1.28149 0.640744 0.767754i \(-0.278626\pi\)
0.640744 + 0.767754i \(0.278626\pi\)
\(140\) −142.756 48.7600i −1.01969 0.348286i
\(141\) 188.782i 1.33888i
\(142\) −17.6246 + 106.127i −0.124117 + 0.747373i
\(143\) 11.2059i 0.0783627i
\(144\) −46.4588 35.9286i −0.322630 0.249504i
\(145\) −191.110 −1.31800
\(146\) −117.912 19.5817i −0.807615 0.134121i
\(147\) 38.5266 0.262086
\(148\) −27.5209 + 80.5739i −0.185952 + 0.544418i
\(149\) 187.761i 1.26014i 0.776538 + 0.630070i \(0.216974\pi\)
−0.776538 + 0.630070i \(0.783026\pi\)
\(150\) 86.6255 + 14.3859i 0.577503 + 0.0959062i
\(151\) 95.8596i 0.634831i 0.948286 + 0.317416i \(0.102815\pi\)
−0.948286 + 0.317416i \(0.897185\pi\)
\(152\) −122.204 65.7652i −0.803976 0.432666i
\(153\) 57.5469 0.376124
\(154\) 12.2628 73.8410i 0.0796286 0.479487i
\(155\) −284.928 −1.83825
\(156\) 5.07985 14.8725i 0.0325632 0.0953363i
\(157\) 13.5115i 0.0860605i −0.999074 0.0430302i \(-0.986299\pi\)
0.999074 0.0430302i \(-0.0137012\pi\)
\(158\) 14.6765 88.3750i 0.0928891 0.559335i
\(159\) 154.176i 0.969662i
\(160\) −155.640 + 144.400i −0.972753 + 0.902502i
\(161\) 27.2609 0.169323
\(162\) 68.0487 + 11.3009i 0.420053 + 0.0697585i
\(163\) −140.385 −0.861256 −0.430628 0.902529i \(-0.641708\pi\)
−0.430628 + 0.902529i \(0.641708\pi\)
\(164\) 254.655 + 86.9802i 1.55278 + 0.530367i
\(165\) 100.845i 0.611182i
\(166\) 95.7296 + 15.8979i 0.576685 + 0.0957703i
\(167\) 208.303i 1.24732i 0.781695 + 0.623661i \(0.214355\pi\)
−0.781695 + 0.623661i \(0.785645\pi\)
\(168\) −49.7489 + 92.4430i −0.296124 + 0.550256i
\(169\) 166.103 0.982860
\(170\) 34.0810 205.220i 0.200477 1.20718i
\(171\) −63.6752 −0.372370
\(172\) 173.017 + 59.0958i 1.00591 + 0.343581i
\(173\) 284.507i 1.64455i −0.569091 0.822274i \(-0.692705\pi\)
0.569091 0.822274i \(-0.307295\pi\)
\(174\) −21.7879 + 131.197i −0.125218 + 0.754005i
\(175\) 108.109i 0.617768i
\(176\) −83.3339 64.4457i −0.473488 0.366169i
\(177\) 80.5830 0.455271
\(178\) −64.6831 10.7419i −0.363388 0.0603480i
\(179\) 43.1219 0.240904 0.120452 0.992719i \(-0.461566\pi\)
0.120452 + 0.992719i \(0.461566\pi\)
\(180\) −31.4870 + 92.1855i −0.174928 + 0.512142i
\(181\) 175.849i 0.971541i −0.874086 0.485770i \(-0.838539\pi\)
0.874086 0.485770i \(-0.161461\pi\)
\(182\) 19.0874 + 3.16985i 0.104876 + 0.0174168i
\(183\) 142.566i 0.779048i
\(184\) 18.1817 33.7850i 0.0988134 0.183614i
\(185\) 141.226 0.763385
\(186\) −32.4838 + 195.603i −0.174644 + 1.05163i
\(187\) 103.223 0.551994
\(188\) 105.728 309.544i 0.562383 1.64651i
\(189\) 166.270i 0.879733i
\(190\) −37.7104 + 227.075i −0.198476 + 1.19513i
\(191\) 174.764i 0.914995i −0.889211 0.457497i \(-0.848746\pi\)
0.889211 0.457497i \(-0.151254\pi\)
\(192\) 81.3864 + 123.309i 0.423888 + 0.642237i
\(193\) −83.6805 −0.433578 −0.216789 0.976219i \(-0.569558\pi\)
−0.216789 + 0.976219i \(0.569558\pi\)
\(194\) 262.241 + 43.5505i 1.35176 + 0.224487i
\(195\) −26.0678 −0.133681
\(196\) 63.1717 + 21.5770i 0.322305 + 0.110087i
\(197\) 156.944i 0.796669i 0.917240 + 0.398334i \(0.130412\pi\)
−0.917240 + 0.398334i \(0.869588\pi\)
\(198\) −47.6831 7.91876i −0.240824 0.0399937i
\(199\) 219.491i 1.10297i 0.834184 + 0.551486i \(0.185939\pi\)
−0.834184 + 0.551486i \(0.814061\pi\)
\(200\) 133.982 + 72.1035i 0.669911 + 0.360517i
\(201\) 19.0921 0.0949855
\(202\) 25.3208 152.470i 0.125351 0.754804i
\(203\) −163.735 −0.806576
\(204\) −136.998 46.7931i −0.671558 0.229378i
\(205\) 446.348i 2.17731i
\(206\) −44.0646 + 265.337i −0.213906 + 1.28804i
\(207\) 17.6039i 0.0850428i
\(208\) 16.6588 21.5413i 0.0800903 0.103564i
\(209\) −114.215 −0.546485
\(210\) 171.773 + 28.5265i 0.817968 + 0.135840i
\(211\) 138.858 0.658094 0.329047 0.944314i \(-0.393273\pi\)
0.329047 + 0.944314i \(0.393273\pi\)
\(212\) −86.3471 + 252.801i −0.407297 + 1.19246i
\(213\) 124.177i 0.582989i
\(214\) −89.3156 14.8327i −0.417363 0.0693116i
\(215\) 303.256i 1.41049i
\(216\) 206.061 + 110.893i 0.953987 + 0.513395i
\(217\) −244.114 −1.12495
\(218\) 55.0906 331.730i 0.252709 1.52170i
\(219\) 137.966 0.629981
\(220\) −56.4787 + 165.355i −0.256722 + 0.751613i
\(221\) 26.6824i 0.120735i
\(222\) 16.1008 96.9515i 0.0725261 0.436719i
\(223\) 291.890i 1.30892i −0.756096 0.654461i \(-0.772896\pi\)
0.756096 0.654461i \(-0.227104\pi\)
\(224\) −133.346 + 123.716i −0.595294 + 0.552303i
\(225\) 69.8121 0.310276
\(226\) −54.5291 9.05567i −0.241279 0.0400693i
\(227\) 94.3305 0.415553 0.207776 0.978176i \(-0.433377\pi\)
0.207776 + 0.978176i \(0.433377\pi\)
\(228\) 151.587 + 51.7762i 0.664855 + 0.227089i
\(229\) 399.749i 1.74563i −0.488051 0.872815i \(-0.662292\pi\)
0.488051 0.872815i \(-0.337708\pi\)
\(230\) −62.7778 10.4255i −0.272947 0.0453284i
\(231\) 86.3996i 0.374024i
\(232\) −109.203 + 202.920i −0.470702 + 0.874654i
\(233\) −280.560 −1.20412 −0.602060 0.798450i \(-0.705653\pi\)
−0.602060 + 0.798450i \(0.705653\pi\)
\(234\) 2.04695 12.3258i 0.00874763 0.0526742i
\(235\) −542.554 −2.30874
\(236\) 132.131 + 45.1309i 0.559878 + 0.191232i
\(237\) 103.406i 0.436310i
\(238\) 29.1991 175.824i 0.122685 0.738755i
\(239\) 333.128i 1.39384i 0.717148 + 0.696921i \(0.245447\pi\)
−0.717148 + 0.696921i \(0.754553\pi\)
\(240\) 149.918 193.856i 0.624656 0.807735i
\(241\) 209.486 0.869237 0.434619 0.900615i \(-0.356883\pi\)
0.434619 + 0.900615i \(0.356883\pi\)
\(242\) 153.200 + 25.4421i 0.633059 + 0.105132i
\(243\) 183.634 0.755695
\(244\) −79.8446 + 233.764i −0.327232 + 0.958048i
\(245\) 110.725i 0.451937i
\(246\) −306.417 50.8868i −1.24560 0.206857i
\(247\) 29.5239i 0.119530i
\(248\) −162.812 + 302.535i −0.656498 + 1.21990i
\(249\) −112.011 −0.449844
\(250\) −13.0020 + 78.2923i −0.0520081 + 0.313169i
\(251\) 306.286 1.22026 0.610131 0.792300i \(-0.291117\pi\)
0.610131 + 0.792300i \(0.291117\pi\)
\(252\) −26.9766 + 78.9805i −0.107050 + 0.313415i
\(253\) 31.5764i 0.124808i
\(254\) −30.3687 + 182.866i −0.119562 + 0.719946i
\(255\) 240.123i 0.941661i
\(256\) 64.3886 + 247.770i 0.251518 + 0.967853i
\(257\) −473.033 −1.84059 −0.920297 0.391221i \(-0.872053\pi\)
−0.920297 + 0.391221i \(0.872053\pi\)
\(258\) −208.185 34.5733i −0.806918 0.134005i
\(259\) 120.996 0.467168
\(260\) −42.7431 14.5994i −0.164397 0.0561515i
\(261\) 105.732i 0.405105i
\(262\) 131.993 + 21.9202i 0.503791 + 0.0836648i
\(263\) 171.819i 0.653304i −0.945145 0.326652i \(-0.894080\pi\)
0.945145 0.326652i \(-0.105920\pi\)
\(264\) 107.077 + 57.6241i 0.405594 + 0.218273i
\(265\) 443.099 1.67207
\(266\) −32.3086 + 194.547i −0.121461 + 0.731382i
\(267\) 75.6842 0.283461
\(268\) 31.3051 + 10.6926i 0.116810 + 0.0398978i
\(269\) 135.873i 0.505105i −0.967583 0.252553i \(-0.918730\pi\)
0.967583 0.252553i \(-0.0812701\pi\)
\(270\) 63.5873 382.894i 0.235509 1.41812i
\(271\) 272.728i 1.00638i −0.864177 0.503188i \(-0.832160\pi\)
0.864177 0.503188i \(-0.167840\pi\)
\(272\) −198.427 153.452i −0.729512 0.564163i
\(273\) −22.3337 −0.0818085
\(274\) −308.920 51.3024i −1.12744 0.187235i
\(275\) 125.223 0.455357
\(276\) −14.3142 + 41.9082i −0.0518631 + 0.151841i
\(277\) 69.0908i 0.249425i −0.992193 0.124713i \(-0.960199\pi\)
0.992193 0.124713i \(-0.0398009\pi\)
\(278\) −351.441 58.3639i −1.26417 0.209942i
\(279\) 157.638i 0.565009i
\(280\) 265.679 + 142.977i 0.948853 + 0.510632i
\(281\) −345.907 −1.23099 −0.615493 0.788142i \(-0.711043\pi\)
−0.615493 + 0.788142i \(0.711043\pi\)
\(282\) −61.8550 + 372.462i −0.219344 + 1.32079i
\(283\) 158.112 0.558698 0.279349 0.960190i \(-0.409881\pi\)
0.279349 + 0.960190i \(0.409881\pi\)
\(284\) 69.5457 203.611i 0.244879 0.716942i
\(285\) 265.695i 0.932263i
\(286\) 3.67164 22.1089i 0.0128379 0.0773040i
\(287\) 382.411i 1.33244i
\(288\) 79.8900 + 86.1086i 0.277396 + 0.298988i
\(289\) −43.2146 −0.149531
\(290\) 377.056 + 62.6179i 1.30019 + 0.215924i
\(291\) −306.842 −1.05444
\(292\) 226.221 + 77.2684i 0.774731 + 0.264618i
\(293\) 424.612i 1.44919i 0.689176 + 0.724594i \(0.257973\pi\)
−0.689176 + 0.724594i \(0.742027\pi\)
\(294\) −76.0121 12.6234i −0.258545 0.0429366i
\(295\) 231.594i 0.785063i
\(296\) 80.6985 149.953i 0.272630 0.506599i
\(297\) 192.590 0.648452
\(298\) 61.5205 370.448i 0.206445 1.24312i
\(299\) 8.16228 0.0272986
\(300\) −166.197 56.7663i −0.553989 0.189221i
\(301\) 259.817i 0.863178i
\(302\) 31.4087 189.129i 0.104002 0.626254i
\(303\) 178.402i 0.588786i
\(304\) 219.558 + 169.794i 0.722231 + 0.558533i
\(305\) 409.731 1.34338
\(306\) −113.539 18.8554i −0.371042 0.0616191i
\(307\) 460.273 1.49926 0.749630 0.661857i \(-0.230232\pi\)
0.749630 + 0.661857i \(0.230232\pi\)
\(308\) −48.3885 + 141.669i −0.157105 + 0.459963i
\(309\) 310.464i 1.00474i
\(310\) 562.157 + 93.3577i 1.81341 + 0.301154i
\(311\) 256.687i 0.825359i 0.910876 + 0.412680i \(0.135407\pi\)
−0.910876 + 0.412680i \(0.864593\pi\)
\(312\) −14.8955 + 27.6786i −0.0477418 + 0.0887135i
\(313\) −491.032 −1.56879 −0.784396 0.620261i \(-0.787027\pi\)
−0.784396 + 0.620261i \(0.787027\pi\)
\(314\) −4.42709 + 26.6579i −0.0140990 + 0.0848977i
\(315\) 138.433 0.439471
\(316\) −57.9127 + 169.553i −0.183268 + 0.536561i
\(317\) 533.919i 1.68429i 0.539253 + 0.842144i \(0.318707\pi\)
−0.539253 + 0.842144i \(0.681293\pi\)
\(318\) 50.5164 304.186i 0.158856 0.956561i
\(319\) 189.654i 0.594527i
\(320\) 354.389 233.903i 1.10746 0.730946i
\(321\) 104.506 0.325564
\(322\) −53.7852 8.93214i −0.167035 0.0277396i
\(323\) −271.960 −0.841980
\(324\) −130.556 44.5927i −0.402950 0.137632i
\(325\) 32.3694i 0.0995981i
\(326\) 276.976 + 45.9975i 0.849620 + 0.141097i
\(327\) 388.150i 1.18700i
\(328\) −473.930 255.049i −1.44491 0.777588i
\(329\) −464.837 −1.41288
\(330\) 33.0422 198.965i 0.100128 0.602925i
\(331\) −558.000 −1.68580 −0.842900 0.538070i \(-0.819154\pi\)
−0.842900 + 0.538070i \(0.819154\pi\)
\(332\) −183.664 62.7323i −0.553203 0.188953i
\(333\) 78.1340i 0.234636i
\(334\) 68.2511 410.977i 0.204345 1.23047i
\(335\) 54.8702i 0.163792i
\(336\) 128.443 166.088i 0.382270 0.494308i
\(337\) 208.304 0.618114 0.309057 0.951043i \(-0.399987\pi\)
0.309057 + 0.951043i \(0.399987\pi\)
\(338\) −327.718 54.4243i −0.969581 0.161019i
\(339\) 63.8032 0.188210
\(340\) −134.482 + 393.728i −0.395536 + 1.15802i
\(341\) 282.757i 0.829200i
\(342\) 125.630 + 20.8634i 0.367339 + 0.0610041i
\(343\) 373.394i 1.08861i
\(344\) −321.996 173.284i −0.936034 0.503734i
\(345\) 73.4549 0.212913
\(346\) −93.2197 + 561.326i −0.269421 + 1.62233i
\(347\) −440.715 −1.27007 −0.635036 0.772482i \(-0.719015\pi\)
−0.635036 + 0.772482i \(0.719015\pi\)
\(348\) 85.9742 251.710i 0.247052 0.723303i
\(349\) 445.460i 1.27639i −0.769875 0.638195i \(-0.779681\pi\)
0.769875 0.638195i \(-0.220319\pi\)
\(350\) 35.4224 213.298i 0.101207 0.609422i
\(351\) 49.7833i 0.141833i
\(352\) 143.300 + 154.455i 0.407103 + 0.438791i
\(353\) 591.364 1.67525 0.837626 0.546245i \(-0.183943\pi\)
0.837626 + 0.546245i \(0.183943\pi\)
\(354\) −158.988 26.4033i −0.449120 0.0745856i
\(355\) −356.881 −1.00530
\(356\) 124.099 + 42.3873i 0.348592 + 0.119065i
\(357\) 205.727i 0.576267i
\(358\) −85.0785 14.1290i −0.237650 0.0394666i
\(359\) 33.1276i 0.0922774i −0.998935 0.0461387i \(-0.985308\pi\)
0.998935 0.0461387i \(-0.0146916\pi\)
\(360\) 92.3280 171.563i 0.256467 0.476565i
\(361\) −60.0787 −0.166423
\(362\) −57.6175 + 346.946i −0.159164 + 0.958414i
\(363\) −179.256 −0.493819
\(364\) −36.6204 12.5081i −0.100605 0.0343629i
\(365\) 396.510i 1.08633i
\(366\) 46.7121 281.279i 0.127629 0.768522i
\(367\) 52.5165i 0.143097i 0.997437 + 0.0715483i \(0.0227940\pi\)
−0.997437 + 0.0715483i \(0.977206\pi\)
\(368\) −46.9418 + 60.6998i −0.127559 + 0.164945i
\(369\) −246.944 −0.669224
\(370\) −278.636 46.2733i −0.753071 0.125063i
\(371\) 379.627 1.02325
\(372\) 128.180 375.276i 0.344569 1.00881i
\(373\) 335.552i 0.899602i 0.893129 + 0.449801i \(0.148505\pi\)
−0.893129 + 0.449801i \(0.851495\pi\)
\(374\) −203.657 33.8213i −0.544536 0.0904314i
\(375\) 91.6080i 0.244288i
\(376\) −310.022 + 576.081i −0.824527 + 1.53213i
\(377\) −49.0243 −0.130038
\(378\) 54.4788 328.046i 0.144124 0.867847i
\(379\) −447.090 −1.17966 −0.589829 0.807528i \(-0.700805\pi\)
−0.589829 + 0.807528i \(0.700805\pi\)
\(380\) 148.804 435.657i 0.391588 1.14647i
\(381\) 213.968i 0.561595i
\(382\) −57.2620 + 344.806i −0.149901 + 0.902632i
\(383\) 335.690i 0.876475i −0.898859 0.438237i \(-0.855603\pi\)
0.898859 0.438237i \(-0.144397\pi\)
\(384\) −120.171 269.953i −0.312945 0.703004i
\(385\) 248.310 0.644962
\(386\) 165.100 + 27.4182i 0.427720 + 0.0710316i
\(387\) −167.778 −0.433534
\(388\) −503.127 171.848i −1.29672 0.442908i
\(389\) 680.719i 1.74992i 0.484195 + 0.874960i \(0.339112\pi\)
−0.484195 + 0.874960i \(0.660888\pi\)
\(390\) 51.4312 + 8.54120i 0.131875 + 0.0219005i
\(391\) 75.1869i 0.192294i
\(392\) −117.567 63.2694i −0.299915 0.161401i
\(393\) −154.442 −0.392983
\(394\) 51.4231 309.647i 0.130516 0.785905i
\(395\) 297.185 0.752367
\(396\) 91.4831 + 31.2471i 0.231018 + 0.0789067i
\(397\) 436.464i 1.09941i −0.835360 0.549703i \(-0.814741\pi\)
0.835360 0.549703i \(-0.185259\pi\)
\(398\) 71.9171 433.052i 0.180696 1.08807i
\(399\) 227.636i 0.570515i
\(400\) −240.719 186.158i −0.601797 0.465396i
\(401\) 725.449 1.80910 0.904550 0.426368i \(-0.140207\pi\)
0.904550 + 0.426368i \(0.140207\pi\)
\(402\) −37.6683 6.25559i −0.0937022 0.0155612i
\(403\) −73.0909 −0.181367
\(404\) −99.9150 + 292.525i −0.247314 + 0.724071i
\(405\) 228.832i 0.565018i
\(406\) 323.045 + 53.6483i 0.795678 + 0.132139i
\(407\) 140.150i 0.344349i
\(408\) 254.962 + 137.210i 0.624906 + 0.336298i
\(409\) 168.291 0.411469 0.205735 0.978608i \(-0.434042\pi\)
0.205735 + 0.978608i \(0.434042\pi\)
\(410\) −146.247 + 880.635i −0.356701 + 2.14789i
\(411\) 361.460 0.879464
\(412\) 173.877 509.066i 0.422031 1.23560i
\(413\) 198.419i 0.480434i
\(414\) −5.76797 + 34.7320i −0.0139323 + 0.0838938i
\(415\) 321.917i 0.775704i
\(416\) −39.9255 + 37.0421i −0.0959747 + 0.0890436i
\(417\) 411.213 0.986121
\(418\) 225.344 + 37.4231i 0.539102 + 0.0895289i
\(419\) 512.274 1.22261 0.611306 0.791395i \(-0.290645\pi\)
0.611306 + 0.791395i \(0.290645\pi\)
\(420\) −329.558 112.564i −0.784663 0.268010i
\(421\) 468.183i 1.11207i 0.831158 + 0.556036i \(0.187678\pi\)
−0.831158 + 0.556036i \(0.812322\pi\)
\(422\) −273.964 45.4973i −0.649203 0.107813i
\(423\) 300.170i 0.709622i
\(424\) 253.192 470.480i 0.597151 1.10962i
\(425\) 298.171 0.701578
\(426\) −40.6869 + 244.998i −0.0955092 + 0.575113i
\(427\) 351.039 0.822105
\(428\) 171.358 + 58.5291i 0.400369 + 0.136750i
\(429\) 25.8692i 0.0603011i
\(430\) −99.3630 + 598.318i −0.231077 + 1.39144i
\(431\) 272.969i 0.633340i −0.948536 0.316670i \(-0.897435\pi\)
0.948536 0.316670i \(-0.102565\pi\)
\(432\) −370.220 286.307i −0.856990 0.662747i
\(433\) −703.918 −1.62568 −0.812838 0.582490i \(-0.802079\pi\)
−0.812838 + 0.582490i \(0.802079\pi\)
\(434\) 481.631 + 79.9847i 1.10975 + 0.184297i
\(435\) −441.185 −1.01422
\(436\) −217.385 + 636.446i −0.498590 + 1.45974i
\(437\) 83.1937i 0.190375i
\(438\) −272.204 45.2050i −0.621469 0.103208i
\(439\) 692.678i 1.57785i 0.614486 + 0.788927i \(0.289363\pi\)
−0.614486 + 0.788927i \(0.710637\pi\)
\(440\) 165.610 307.736i 0.376387 0.699400i
\(441\) −61.2587 −0.138909
\(442\) 8.74259 52.6439i 0.0197796 0.119104i
\(443\) 434.796 0.981481 0.490741 0.871306i \(-0.336726\pi\)
0.490741 + 0.871306i \(0.336726\pi\)
\(444\) −63.5330 + 186.008i −0.143092 + 0.418936i
\(445\) 217.515i 0.488797i
\(446\) −95.6386 + 575.892i −0.214436 + 1.29124i
\(447\) 433.453i 0.969694i
\(448\) 303.624 200.397i 0.677733 0.447316i
\(449\) 114.638 0.255319 0.127660 0.991818i \(-0.459253\pi\)
0.127660 + 0.991818i \(0.459253\pi\)
\(450\) −137.738 22.8742i −0.306084 0.0508315i
\(451\) −442.947 −0.982144
\(452\) 104.618 + 35.7333i 0.231455 + 0.0790559i
\(453\) 221.295i 0.488511i
\(454\) −186.112 30.9077i −0.409938 0.0680786i
\(455\) 64.1866i 0.141069i
\(456\) −282.113 151.821i −0.618669 0.332941i
\(457\) 178.593 0.390795 0.195397 0.980724i \(-0.437400\pi\)
0.195397 + 0.980724i \(0.437400\pi\)
\(458\) −130.979 + 788.697i −0.285981 + 1.72205i
\(459\) 458.579 0.999082
\(460\) 120.443 + 41.1387i 0.261833 + 0.0894320i
\(461\) 429.496i 0.931662i 0.884874 + 0.465831i \(0.154244\pi\)
−0.884874 + 0.465831i \(0.845756\pi\)
\(462\) 28.3091 170.465i 0.0612752 0.368971i
\(463\) 115.307i 0.249044i 0.992217 + 0.124522i \(0.0397397\pi\)
−0.992217 + 0.124522i \(0.960260\pi\)
\(464\) 281.942 364.576i 0.607634 0.785724i
\(465\) −657.767 −1.41455
\(466\) 553.539 + 91.9265i 1.18785 + 0.197267i
\(467\) 274.914 0.588681 0.294340 0.955701i \(-0.404900\pi\)
0.294340 + 0.955701i \(0.404900\pi\)
\(468\) −8.07716 + 23.6478i −0.0172589 + 0.0505294i
\(469\) 47.0104i 0.100235i
\(470\) 1070.45 + 177.770i 2.27755 + 0.378234i
\(471\) 31.1918i 0.0662246i
\(472\) −245.905 132.335i −0.520984 0.280372i
\(473\) −300.946 −0.636249
\(474\) 33.8812 204.017i 0.0714793 0.430415i
\(475\) −329.923 −0.694576
\(476\) −115.218 + 337.329i −0.242055 + 0.708674i
\(477\) 245.146i 0.513933i
\(478\) 109.151 657.255i 0.228349 1.37501i
\(479\) 483.354i 1.00909i 0.863385 + 0.504545i \(0.168340\pi\)
−0.863385 + 0.504545i \(0.831660\pi\)
\(480\) −359.302 + 333.353i −0.748545 + 0.694486i
\(481\) 36.2279 0.0753179
\(482\) −413.312 68.6388i −0.857493 0.142404i
\(483\) 62.9329 0.130296
\(484\) −293.925 100.393i −0.607283 0.207424i
\(485\) 881.858i 1.81826i
\(486\) −362.306 60.1683i −0.745485 0.123803i
\(487\) 182.966i 0.375699i −0.982198 0.187850i \(-0.939848\pi\)
0.982198 0.187850i \(-0.0601518\pi\)
\(488\) 234.125 435.049i 0.479765 0.891495i
\(489\) −324.083 −0.662747
\(490\) −36.2793 + 218.457i −0.0740393 + 0.445831i
\(491\) 881.931 1.79619 0.898097 0.439798i \(-0.144950\pi\)
0.898097 + 0.439798i \(0.144950\pi\)
\(492\) 587.881 + 200.797i 1.19488 + 0.408124i
\(493\) 451.588i 0.916000i
\(494\) −9.67361 + 58.2500i −0.0195822 + 0.117915i
\(495\) 160.347i 0.323934i
\(496\) 420.350 543.549i 0.847480 1.09587i
\(497\) −305.760 −0.615211
\(498\) 220.995 + 36.7008i 0.443766 + 0.0736964i
\(499\) 493.337 0.988652 0.494326 0.869277i \(-0.335415\pi\)
0.494326 + 0.869277i \(0.335415\pi\)
\(500\) 51.3055 150.209i 0.102611 0.300418i
\(501\) 480.874i 0.959829i
\(502\) −604.295 100.356i −1.20378 0.199912i
\(503\) 349.547i 0.694925i −0.937694 0.347462i \(-0.887043\pi\)
0.937694 0.347462i \(-0.112957\pi\)
\(504\) 79.1026 146.988i 0.156950 0.291642i
\(505\) 512.724 1.01529
\(506\) −10.3461 + 62.2995i −0.0204468 + 0.123121i
\(507\) 383.456 0.756323
\(508\) 119.833 350.841i 0.235893 0.690631i
\(509\) 477.957i 0.939011i 0.882929 + 0.469506i \(0.155568\pi\)
−0.882929 + 0.469506i \(0.844432\pi\)
\(510\) 78.6773 473.758i 0.154269 0.928938i
\(511\) 339.713i 0.664800i
\(512\) −45.8544 509.943i −0.0895594 0.995981i
\(513\) −507.414 −0.989111
\(514\) 933.283 + 154.991i 1.81573 + 0.301538i
\(515\) −892.267 −1.73256
\(516\) 399.416 + 136.425i 0.774062 + 0.264389i
\(517\) 538.420i 1.04143i
\(518\) −238.723 39.6449i −0.460856 0.0765345i
\(519\) 656.795i 1.26550i
\(520\) 79.5477 + 42.8092i 0.152976 + 0.0823253i
\(521\) −714.138 −1.37071 −0.685353 0.728211i \(-0.740352\pi\)
−0.685353 + 0.728211i \(0.740352\pi\)
\(522\) 34.6436 208.608i 0.0663671 0.399632i
\(523\) −768.507 −1.46942 −0.734710 0.678381i \(-0.762682\pi\)
−0.734710 + 0.678381i \(0.762682\pi\)
\(524\) −253.238 86.4961i −0.483278 0.165069i
\(525\) 249.575i 0.475380i
\(526\) −56.2970 + 338.995i −0.107029 + 0.644477i
\(527\) 673.277i 1.27756i
\(528\) −192.379 148.775i −0.364355 0.281771i
\(529\) −23.0000 −0.0434783
\(530\) −874.224 145.183i −1.64948 0.273930i
\(531\) −128.130 −0.241299
\(532\) 127.488 373.252i 0.239640 0.701601i
\(533\) 114.499i 0.214820i
\(534\) −149.323 24.7982i −0.279632 0.0464385i
\(535\) 300.348i 0.561398i
\(536\) −58.2609 31.3535i −0.108696 0.0584954i
\(537\) 99.5484 0.185379
\(538\) −44.5194 + 268.075i −0.0827497 + 0.498281i
\(539\) −109.881 −0.203861
\(540\) −250.913 + 734.606i −0.464653 + 1.36038i
\(541\) 266.158i 0.491975i −0.969273 0.245987i \(-0.920888\pi\)
0.969273 0.245987i \(-0.0791121\pi\)
\(542\) −89.3603 + 538.087i −0.164871 + 0.992780i
\(543\) 405.954i 0.747612i
\(544\) 341.214 + 367.774i 0.627231 + 0.676055i
\(545\) 1115.53 2.04685
\(546\) 44.0639 + 7.31772i 0.0807032 + 0.0134024i
\(547\) −521.270 −0.952962 −0.476481 0.879185i \(-0.658088\pi\)
−0.476481 + 0.879185i \(0.658088\pi\)
\(548\) 592.682 + 202.437i 1.08154 + 0.369411i
\(549\) 226.685i 0.412905i
\(550\) −247.063 41.0298i −0.449205 0.0745997i
\(551\) 499.679i 0.906858i
\(552\) 41.9730 77.9939i 0.0760381 0.141293i
\(553\) 254.615 0.460425
\(554\) −22.6378 + 136.315i −0.0408625 + 0.246055i
\(555\) 326.026 0.587434
\(556\) 674.261 + 230.301i 1.21270 + 0.414211i
\(557\) 198.144i 0.355735i 0.984054 + 0.177867i \(0.0569198\pi\)
−0.984054 + 0.177867i \(0.943080\pi\)
\(558\) 51.6505 311.015i 0.0925636 0.557375i
\(559\) 77.7925i 0.139164i
\(560\) −477.332 369.141i −0.852378 0.659181i
\(561\) 238.294 0.424766
\(562\) 682.467 + 113.338i 1.21435 + 0.201668i
\(563\) −49.7822 −0.0884231 −0.0442115 0.999022i \(-0.514078\pi\)
−0.0442115 + 0.999022i \(0.514078\pi\)
\(564\) 244.077 714.593i 0.432761 1.26701i
\(565\) 183.369i 0.324547i
\(566\) −311.951 51.8058i −0.551150 0.0915297i
\(567\) 196.053i 0.345773i
\(568\) −203.926 + 378.934i −0.359025 + 0.667137i
\(569\) 1047.92 1.84169 0.920844 0.389932i \(-0.127501\pi\)
0.920844 + 0.389932i \(0.127501\pi\)
\(570\) −87.0558 + 524.210i −0.152729 + 0.919667i
\(571\) 613.654 1.07470 0.537350 0.843359i \(-0.319425\pi\)
0.537350 + 0.843359i \(0.319425\pi\)
\(572\) −14.4881 + 42.4174i −0.0253289 + 0.0741563i
\(573\) 403.449i 0.704100i
\(574\) −125.298 + 754.489i −0.218290 + 1.31444i
\(575\) 91.2117i 0.158629i
\(576\) −129.407 196.067i −0.224666 0.340394i
\(577\) 432.629 0.749790 0.374895 0.927067i \(-0.377679\pi\)
0.374895 + 0.927067i \(0.377679\pi\)
\(578\) 85.2615 + 14.1594i 0.147511 + 0.0244972i
\(579\) −193.179 −0.333643
\(580\) −723.407 247.088i −1.24725 0.426013i
\(581\) 275.804i 0.474706i
\(582\) 605.393 + 100.538i 1.04019 + 0.172746i
\(583\) 439.723i 0.754241i
\(584\) −421.013 226.571i −0.720912 0.387964i
\(585\) 41.4488 0.0708526
\(586\) 139.126 837.750i 0.237416 1.42961i
\(587\) −318.340 −0.542317 −0.271158 0.962535i \(-0.587407\pi\)
−0.271158 + 0.962535i \(0.587407\pi\)
\(588\) 145.834 + 49.8113i 0.248017 + 0.0847130i
\(589\) 744.976i 1.26481i
\(590\) −75.8824 + 456.929i −0.128614 + 0.774456i
\(591\) 362.310i 0.613046i
\(592\) −208.349 + 269.413i −0.351941 + 0.455090i
\(593\) −131.119 −0.221111 −0.110556 0.993870i \(-0.535263\pi\)
−0.110556 + 0.993870i \(0.535263\pi\)
\(594\) −379.976 63.1028i −0.639691 0.106234i
\(595\) 591.255 0.993706
\(596\) −242.757 + 710.729i −0.407311 + 1.19250i
\(597\) 506.704i 0.848750i
\(598\) −16.1040 2.67440i −0.0269298 0.00447224i
\(599\) 304.644i 0.508588i −0.967127 0.254294i \(-0.918157\pi\)
0.967127 0.254294i \(-0.0818431\pi\)
\(600\) 309.303 + 166.454i 0.515504 + 0.277423i
\(601\) −262.821 −0.437306 −0.218653 0.975803i \(-0.570166\pi\)
−0.218653 + 0.975803i \(0.570166\pi\)
\(602\) −85.1298 + 512.612i −0.141412 + 0.851516i
\(603\) −30.3571 −0.0503435
\(604\) −123.937 + 362.856i −0.205194 + 0.600755i
\(605\) 515.178i 0.851534i
\(606\) 58.4541 351.984i 0.0964589 0.580831i
\(607\) 884.937i 1.45789i −0.684574 0.728943i \(-0.740012\pi\)
0.684574 0.728943i \(-0.259988\pi\)
\(608\) −377.550 406.939i −0.620971 0.669307i
\(609\) −377.988 −0.620670
\(610\) −808.389 134.250i −1.32523 0.220081i
\(611\) −139.178 −0.227787
\(612\) 217.832 + 74.4028i 0.355934 + 0.121573i
\(613\) 78.9790i 0.128840i 0.997923 + 0.0644200i \(0.0205197\pi\)
−0.997923 + 0.0644200i \(0.979480\pi\)
\(614\) −908.108 150.810i −1.47900 0.245619i
\(615\) 1030.41i 1.67546i
\(616\) 141.888 263.655i 0.230337 0.428011i
\(617\) −152.392 −0.246989 −0.123494 0.992345i \(-0.539410\pi\)
−0.123494 + 0.992345i \(0.539410\pi\)
\(618\) −101.725 + 612.540i −0.164603 + 0.991164i
\(619\) −582.058 −0.940320 −0.470160 0.882581i \(-0.655804\pi\)
−0.470160 + 0.882581i \(0.655804\pi\)
\(620\) −1078.53 368.385i −1.73957 0.594170i
\(621\) 140.281i 0.225896i
\(622\) 84.1043 506.437i 0.135216 0.814208i
\(623\) 186.357i 0.299128i
\(624\) 38.4574 49.7288i 0.0616304 0.0796935i
\(625\) −738.753 −1.18201
\(626\) 968.795 + 160.888i 1.54760 + 0.257010i
\(627\) −263.670 −0.420527
\(628\) 17.4691 51.1449i 0.0278170 0.0814409i
\(629\) 333.713i 0.530546i
\(630\) −273.126 45.3582i −0.433533 0.0719971i
\(631\) 98.8684i 0.156685i −0.996926 0.0783426i \(-0.975037\pi\)
0.996926 0.0783426i \(-0.0249628\pi\)
\(632\) 169.815 315.549i 0.268695 0.499287i
\(633\) 320.558 0.506411
\(634\) 174.940 1053.41i 0.275931 1.66153i
\(635\) −614.938 −0.968406
\(636\) −199.335 + 583.601i −0.313420 + 0.917612i
\(637\) 28.4035i 0.0445894i
\(638\) 62.1408 374.184i 0.0973994 0.586495i
\(639\) 197.446i 0.308992i
\(640\) −775.840 + 345.368i −1.21225 + 0.539638i
\(641\) −38.9478 −0.0607611 −0.0303805 0.999538i \(-0.509672\pi\)
−0.0303805 + 0.999538i \(0.509672\pi\)
\(642\) −206.188 34.2418i −0.321166 0.0533361i
\(643\) 224.528 0.349188 0.174594 0.984640i \(-0.444139\pi\)
0.174594 + 0.984640i \(0.444139\pi\)
\(644\) 103.190 + 35.2458i 0.160234 + 0.0547296i
\(645\) 700.078i 1.08539i
\(646\) 536.571 + 89.1085i 0.830605 + 0.137939i
\(647\) 773.141i 1.19496i −0.801883 0.597481i \(-0.796168\pi\)
0.801883 0.597481i \(-0.203832\pi\)
\(648\) 242.973 + 130.758i 0.374958 + 0.201786i
\(649\) −229.829 −0.354128
\(650\) 10.6059 63.8641i 0.0163168 0.0982524i
\(651\) −563.546 −0.865662
\(652\) −531.397 181.504i −0.815025 0.278381i
\(653\) 582.457i 0.891972i −0.895040 0.445986i \(-0.852853\pi\)
0.895040 0.445986i \(-0.147147\pi\)
\(654\) 127.179 765.811i 0.194463 1.17097i
\(655\) 443.863i 0.677654i
\(656\) 851.485 + 658.490i 1.29800 + 1.00380i
\(657\) −219.371 −0.333898
\(658\) 917.112 + 152.305i 1.39379 + 0.231467i
\(659\) −1221.95 −1.85425 −0.927125 0.374752i \(-0.877728\pi\)
−0.927125 + 0.374752i \(0.877728\pi\)
\(660\) −130.383 + 381.728i −0.197550 + 0.578375i
\(661\) 869.718i 1.31576i −0.753122 0.657881i \(-0.771453\pi\)
0.753122 0.657881i \(-0.228547\pi\)
\(662\) 1100.92 + 182.831i 1.66302 + 0.276179i
\(663\) 61.5974i 0.0929071i
\(664\) 341.810 + 183.947i 0.514774 + 0.277029i
\(665\) −654.219 −0.983788
\(666\) −25.6009 + 154.157i −0.0384397 + 0.231466i
\(667\) 138.143 0.207111
\(668\) −269.316 + 788.486i −0.403168 + 1.18037i
\(669\) 673.838i 1.00723i
\(670\) −17.9784 + 108.258i −0.0268334 + 0.161579i
\(671\) 406.609i 0.605974i
\(672\) −307.834 + 285.602i −0.458086 + 0.425004i
\(673\) 1183.23 1.75815 0.879075 0.476684i \(-0.158161\pi\)
0.879075 + 0.476684i \(0.158161\pi\)
\(674\) −410.980 68.2517i −0.609763 0.101264i
\(675\) 556.317 0.824174
\(676\) 628.749 + 214.756i 0.930102 + 0.317686i
\(677\) 525.477i 0.776185i 0.921620 + 0.388093i \(0.126866\pi\)
−0.921620 + 0.388093i \(0.873134\pi\)
\(678\) −125.882 20.9053i −0.185667 0.0308338i
\(679\) 755.537i 1.11272i
\(680\) 394.337 732.754i 0.579907 1.07758i
\(681\) 217.765 0.319773
\(682\) 92.6464 557.874i 0.135845 0.817997i
\(683\) −333.863 −0.488819 −0.244409 0.969672i \(-0.578594\pi\)
−0.244409 + 0.969672i \(0.578594\pi\)
\(684\) −241.029 82.3261i −0.352382 0.120360i
\(685\) 1038.83i 1.51654i
\(686\) −122.344 + 736.699i −0.178344 + 1.07391i
\(687\) 922.836i 1.34328i
\(688\) 578.513 + 447.389i 0.840863 + 0.650275i
\(689\) 113.665 0.164971
\(690\) −144.925 24.0677i −0.210036 0.0348808i
\(691\) 160.462 0.232217 0.116108 0.993237i \(-0.462958\pi\)
0.116108 + 0.993237i \(0.462958\pi\)
\(692\) 367.841 1076.94i 0.531562 1.55627i
\(693\) 137.379i 0.198238i
\(694\) 869.522 + 144.402i 1.25291 + 0.208072i
\(695\) 1181.81i 1.70045i
\(696\) −252.099 + 468.448i −0.362211 + 0.673057i
\(697\) −1054.71 −1.51321
\(698\) −145.956 + 878.883i −0.209107 + 1.25914i
\(699\) −647.683 −0.926586
\(700\) −139.775 + 409.225i −0.199679 + 0.584607i
\(701\) 767.973i 1.09554i −0.836629 0.547770i \(-0.815477\pi\)
0.836629 0.547770i \(-0.184523\pi\)
\(702\) 16.3117 98.2213i 0.0232360 0.139916i
\(703\) 369.251i 0.525251i
\(704\) −232.120 351.688i −0.329717 0.499557i
\(705\) −1252.51 −1.77661
\(706\) −1166.75 193.762i −1.65262 0.274451i
\(707\) 439.279 0.621328
\(708\) 305.030 + 104.186i 0.430833 + 0.147156i
\(709\) 147.850i 0.208533i 0.994549 + 0.104266i \(0.0332494\pi\)
−0.994549 + 0.104266i \(0.966751\pi\)
\(710\) 704.118 + 116.933i 0.991716 + 0.164695i
\(711\) 164.419i 0.231250i
\(712\) −230.956 124.291i −0.324376 0.174565i
\(713\) 205.958 0.288862
\(714\) 67.4072 405.895i 0.0944079 0.568481i
\(715\) 74.3474 0.103982
\(716\) 163.229 + 55.7525i 0.227973 + 0.0778667i
\(717\) 769.039i 1.07258i
\(718\) −10.8544 + 65.3600i −0.0151175 + 0.0910307i
\(719\) 360.341i 0.501169i 0.968095 + 0.250585i \(0.0806229\pi\)
−0.968095 + 0.250585i \(0.919377\pi\)
\(720\) −238.374 + 308.239i −0.331076 + 0.428110i
\(721\) −764.455 −1.06027
\(722\) 118.534 + 19.6850i 0.164174 + 0.0272645i
\(723\) 483.606 0.668888
\(724\) 227.356 665.638i 0.314028 0.919390i
\(725\) 547.837i 0.755637i
\(726\) 353.669 + 58.7339i 0.487147 + 0.0809007i
\(727\) 1008.39i 1.38706i 0.720427 + 0.693531i \(0.243946\pi\)
−0.720427 + 0.693531i \(0.756054\pi\)
\(728\) 68.1529 + 36.6770i 0.0936167 + 0.0503805i
\(729\) 734.339 1.00732
\(730\) −129.918 + 782.307i −0.177970 + 1.07165i
\(731\) −716.586 −0.980281
\(732\) −184.324 + 539.652i −0.251809 + 0.737230i
\(733\) 514.256i 0.701577i 0.936455 + 0.350789i \(0.114086\pi\)
−0.936455 + 0.350789i \(0.885914\pi\)
\(734\) 17.2072 103.614i 0.0234430 0.141163i
\(735\) 255.612i 0.347771i
\(736\) 112.504 104.379i 0.152858 0.141819i
\(737\) −54.4521 −0.0738835
\(738\) 487.214 + 80.9119i 0.660182 + 0.109637i
\(739\) 360.794 0.488220 0.244110 0.969748i \(-0.421504\pi\)
0.244110 + 0.969748i \(0.421504\pi\)
\(740\) 534.582 + 182.592i 0.722408 + 0.246746i
\(741\) 68.1570i 0.0919798i
\(742\) −748.996 124.386i −1.00943 0.167636i
\(743\) 515.070i 0.693230i 0.938007 + 0.346615i \(0.112669\pi\)
−0.938007 + 0.346615i \(0.887331\pi\)
\(744\) −375.856 + 698.413i −0.505183 + 0.938728i
\(745\) 1245.73 1.67213
\(746\) 109.945 662.036i 0.147379 0.887448i
\(747\) 178.102 0.238423
\(748\) 390.728 + 133.458i 0.522364 + 0.178419i
\(749\) 257.325i 0.343558i
\(750\) −30.0157 + 180.741i −0.0400209 + 0.240987i
\(751\) 1155.50i 1.53861i 0.638881 + 0.769306i \(0.279398\pi\)
−0.638881 + 0.769306i \(0.720602\pi\)
\(752\) 800.422 1035.02i 1.06439 1.37635i
\(753\) 707.072 0.939007
\(754\) 96.7239 + 16.0630i 0.128281 + 0.0213037i
\(755\) 635.997 0.842381
\(756\) −214.971 + 629.378i −0.284353 + 0.832511i
\(757\) 67.7308i 0.0894726i 0.998999 + 0.0447363i \(0.0142448\pi\)
−0.998999 + 0.0447363i \(0.985755\pi\)
\(758\) 882.100 + 146.491i 1.16372 + 0.193259i
\(759\) 72.8952i 0.0960411i
\(760\) −436.331 + 810.787i −0.574120 + 1.06682i
\(761\) −80.8701 −0.106268 −0.0531341 0.998587i \(-0.516921\pi\)
−0.0531341 + 0.998587i \(0.516921\pi\)
\(762\) −70.1072 + 422.153i −0.0920042 + 0.554007i
\(763\) 955.740 1.25261
\(764\) 225.953 661.532i 0.295751 0.865879i
\(765\) 381.805i 0.499092i
\(766\) −109.990 + 662.309i −0.143590 + 0.864633i
\(767\) 59.4092i 0.0774566i
\(768\) 148.643 + 571.987i 0.193546 + 0.744774i
\(769\) −1175.57 −1.52870 −0.764352 0.644799i \(-0.776941\pi\)
−0.764352 + 0.644799i \(0.776941\pi\)
\(770\) −489.911 81.3597i −0.636248 0.105662i
\(771\) −1092.01 −1.41636
\(772\) −316.755 108.191i −0.410304 0.140144i
\(773\) 1046.97i 1.35442i 0.735790 + 0.677209i \(0.236811\pi\)
−0.735790 + 0.677209i \(0.763189\pi\)
\(774\) 331.022 + 54.9729i 0.427677 + 0.0710244i
\(775\) 816.775i 1.05390i
\(776\) 936.351 + 503.904i 1.20664 + 0.649361i
\(777\) 279.325 0.359491
\(778\) 223.040 1343.04i 0.286684 1.72628i
\(779\) 1167.02 1.49811
\(780\) −98.6740 33.7032i −0.126505 0.0432092i
\(781\) 354.162i 0.453472i
\(782\) −24.6352 + 148.342i −0.0315029 + 0.189696i
\(783\) 842.559i 1.07606i
\(784\) 211.226 + 163.350i 0.269421 + 0.208355i
\(785\) −89.6444 −0.114197
\(786\) 304.711 + 50.6035i 0.387673 + 0.0643811i
\(787\) 467.379 0.593874 0.296937 0.954897i \(-0.404035\pi\)
0.296937 + 0.954897i \(0.404035\pi\)
\(788\) −202.913 + 594.077i −0.257504 + 0.753905i
\(789\) 396.650i 0.502725i
\(790\) −586.340 97.3737i −0.742202 0.123258i
\(791\) 157.102i 0.198612i
\(792\) −170.256 91.6245i −0.214970 0.115688i
\(793\) 105.106 0.132542
\(794\) −143.009 + 861.135i −0.180112 + 1.08455i
\(795\) 1022.91 1.28668
\(796\) −283.782 + 830.838i −0.356510 + 1.04377i
\(797\) 730.259i 0.916260i 0.888885 + 0.458130i \(0.151481\pi\)
−0.888885 + 0.458130i \(0.848519\pi\)
\(798\) −74.5856 + 449.120i −0.0934656 + 0.562807i
\(799\) 1282.04i 1.60456i
\(800\) 413.938 + 446.159i 0.517422 + 0.557698i
\(801\) −120.341 −0.150238
\(802\) −1431.29 237.696i −1.78466 0.296379i
\(803\) −393.489 −0.490024
\(804\) 72.2690 + 24.6843i 0.0898868 + 0.0307018i
\(805\) 180.868i 0.224680i
\(806\) 144.207 + 23.9485i 0.178916 + 0.0297127i
\(807\) 313.669i 0.388685i
\(808\) 292.977 544.407i 0.362595 0.673771i
\(809\) −318.542 −0.393748 −0.196874 0.980429i \(-0.563079\pi\)
−0.196874 + 0.980429i \(0.563079\pi\)
\(810\) 74.9776 451.481i 0.0925650 0.557384i
\(811\) 945.135 1.16539 0.582697 0.812689i \(-0.301997\pi\)
0.582697 + 0.812689i \(0.301997\pi\)
\(812\) −619.783 211.694i −0.763280 0.260707i
\(813\) 629.603i 0.774419i
\(814\) −45.9207 + 276.513i −0.0564136 + 0.339697i
\(815\) 931.408i 1.14283i
\(816\) −458.077 354.251i −0.561369 0.434131i
\(817\) 792.896 0.970497
\(818\) −332.035 55.1411i −0.405910 0.0674097i
\(819\) 35.5115 0.0433595
\(820\) 577.086 1689.55i 0.703763 2.06043i
\(821\) 1044.28i 1.27196i −0.771706 0.635980i \(-0.780596\pi\)
0.771706 0.635980i \(-0.219404\pi\)
\(822\) −713.152 118.434i −0.867582 0.144080i
\(823\) 282.350i 0.343075i 0.985178 + 0.171537i \(0.0548734\pi\)
−0.985178 + 0.171537i \(0.945127\pi\)
\(824\) −509.853 + 947.404i −0.618753 + 1.14976i
\(825\) 289.082 0.350403
\(826\) −65.0127 + 391.477i −0.0787079 + 0.473943i
\(827\) −149.759 −0.181087 −0.0905436 0.995892i \(-0.528860\pi\)
−0.0905436 + 0.995892i \(0.528860\pi\)
\(828\) 22.7601 66.6357i 0.0274881 0.0804779i
\(829\) 326.779i 0.394184i −0.980385 0.197092i \(-0.936850\pi\)
0.980385 0.197092i \(-0.0631498\pi\)
\(830\) 105.477 635.135i 0.127081 0.765223i
\(831\) 159.499i 0.191936i
\(832\) 90.9091 60.0016i 0.109266 0.0721173i
\(833\) −261.639 −0.314092
\(834\) −811.313 134.735i −0.972798 0.161553i
\(835\) 1382.02 1.65512
\(836\) −432.338 147.670i −0.517151 0.176638i
\(837\) 1256.18i 1.50081i
\(838\) −1010.71 167.848i −1.20609 0.200296i
\(839\) 943.371i 1.12440i 0.827001 + 0.562200i \(0.190045\pi\)
−0.827001 + 0.562200i \(0.809955\pi\)
\(840\) 613.329 + 330.068i 0.730154 + 0.392938i
\(841\) 11.2859 0.0134196
\(842\) 153.402 923.714i 0.182187 1.09705i
\(843\) −798.539 −0.947259
\(844\) 525.617 + 179.530i 0.622769 + 0.212713i
\(845\) 1102.04i 1.30419i
\(846\) 98.3518 592.229i 0.116255 0.700035i
\(847\) 441.382i 0.521112i
\(848\) −653.697 + 845.287i −0.770869 + 0.996800i
\(849\) 365.006 0.429925
\(850\) −588.284 97.6966i −0.692099 0.114937i
\(851\) −102.084 −0.119958
\(852\) 160.549 470.044i 0.188438 0.551695i
\(853\) 341.998i 0.400935i 0.979700 + 0.200468i \(0.0642461\pi\)
−0.979700 + 0.200468i \(0.935754\pi\)
\(854\) −692.592 115.019i −0.810998 0.134683i
\(855\) 422.465i 0.494111i
\(856\) −318.908 171.623i −0.372556 0.200494i
\(857\) 938.470 1.09506 0.547532 0.836785i \(-0.315567\pi\)
0.547532 + 0.836785i \(0.315567\pi\)
\(858\) 8.47612 51.0393i 0.00987893 0.0594864i
\(859\) 462.762 0.538722 0.269361 0.963039i \(-0.413187\pi\)
0.269361 + 0.963039i \(0.413187\pi\)
\(860\) 392.082 1147.91i 0.455909 1.33478i
\(861\) 882.810i 1.02533i
\(862\) −89.4394 + 538.563i −0.103758 + 0.624783i
\(863\) 625.664i 0.724988i −0.931986 0.362494i \(-0.881925\pi\)
0.931986 0.362494i \(-0.118075\pi\)
\(864\) 636.626 + 686.181i 0.736836 + 0.794191i
\(865\) −1887.61 −2.18221
\(866\) 1388.81 + 230.641i 1.60371 + 0.266329i
\(867\) −99.7625 −0.115066
\(868\) −924.041 315.616i −1.06456 0.363613i
\(869\) 294.921i 0.339379i
\(870\) 870.449 + 144.556i 1.00052 + 0.166156i
\(871\) 14.0755i 0.0161602i
\(872\) 637.430 1184.47i 0.730997 1.35833i
\(873\) 487.891 0.558867
\(874\) 27.2587 164.139i 0.0311884 0.187802i
\(875\) −225.566 −0.257790
\(876\) 522.240 + 178.377i 0.596165 + 0.203627i
\(877\) 995.782i 1.13544i 0.823221 + 0.567721i \(0.192175\pi\)
−0.823221 + 0.567721i \(0.807825\pi\)
\(878\) 226.958 1366.64i 0.258495 1.55654i
\(879\) 980.232i 1.11517i
\(880\) −427.576 + 552.894i −0.485882 + 0.628288i
\(881\) −816.257 −0.926512 −0.463256 0.886225i \(-0.653319\pi\)
−0.463256 + 0.886225i \(0.653319\pi\)
\(882\) 120.862 + 20.0716i 0.137032 + 0.0227570i
\(883\) 59.1142 0.0669470 0.0334735 0.999440i \(-0.489343\pi\)
0.0334735 + 0.999440i \(0.489343\pi\)
\(884\) −34.4979 + 101.001i −0.0390248 + 0.114254i
\(885\) 534.642i 0.604115i
\(886\) −857.843 142.462i −0.968220 0.160793i
\(887\) 1156.85i 1.30423i 0.758120 + 0.652115i \(0.226118\pi\)
−0.758120 + 0.652115i \(0.773882\pi\)
\(888\) 186.295 346.173i 0.209792 0.389834i
\(889\) −526.851 −0.592634
\(890\) −71.2694 + 429.151i −0.0800780 + 0.482193i
\(891\) 227.089 0.254869
\(892\) 377.386 1104.89i 0.423078 1.23866i
\(893\) 1418.57i 1.58854i
\(894\) 142.022 855.194i 0.158862 0.956592i
\(895\) 286.100i 0.319665i
\(896\) −664.705 + 295.896i −0.741858 + 0.330241i
\(897\) 18.8429 0.0210066
\(898\) −226.179 37.5617i −0.251870 0.0418281i
\(899\) −1237.03 −1.37601
\(900\) 264.259 + 90.2605i 0.293621 + 0.100289i
\(901\) 1047.03i 1.16207i
\(902\) 873.925 + 145.133i 0.968875 + 0.160901i
\(903\) 599.796i 0.664226i
\(904\) −194.700 104.779i −0.215376 0.115906i
\(905\) −1166.70 −1.28917
\(906\) 72.5081 436.611i 0.0800311 0.481910i
\(907\) −714.420 −0.787673 −0.393837 0.919180i \(-0.628852\pi\)
−0.393837 + 0.919180i \(0.628852\pi\)
\(908\) 357.068 + 121.960i 0.393246 + 0.134318i
\(909\) 283.666i 0.312064i
\(910\) 21.0310 126.639i 0.0231109 0.139163i
\(911\) 550.158i 0.603906i 0.953323 + 0.301953i \(0.0976385\pi\)
−0.953323 + 0.301953i \(0.902361\pi\)
\(912\) 506.858 + 391.976i 0.555766 + 0.429798i
\(913\) 319.464 0.349906
\(914\) −352.360 58.5166i −0.385515 0.0640226i
\(915\) 945.878 1.03375
\(916\) 516.838 1513.17i 0.564234 1.65193i
\(917\) 380.283i 0.414703i
\(918\) −904.766 150.255i −0.985584 0.163676i
\(919\) 644.500i 0.701305i 0.936506 + 0.350653i \(0.114040\pi\)
−0.936506 + 0.350653i \(0.885960\pi\)
\(920\) −224.153 120.629i −0.243644 0.131119i
\(921\) 1062.56 1.15370
\(922\) 140.726 847.386i 0.152631 0.919074i
\(923\) −91.5484 −0.0991857
\(924\) −111.707 + 327.047i −0.120895 + 0.353947i
\(925\) 404.839i 0.437664i
\(926\) 37.7808 227.499i 0.0408000 0.245679i
\(927\) 493.650i 0.532524i
\(928\) −675.720 + 626.921i −0.728147 + 0.675561i
\(929\) 818.122 0.880648 0.440324 0.897839i \(-0.354864\pi\)
0.440324 + 0.897839i \(0.354864\pi\)
\(930\) 1297.76 + 215.520i 1.39544 + 0.231742i
\(931\) 289.501 0.310957
\(932\) −1062.00 362.738i −1.13949 0.389204i
\(933\) 592.570i 0.635124i
\(934\) −542.399 90.0765i −0.580727 0.0964416i
\(935\) 684.851i 0.732461i
\(936\) 23.6843 44.0100i 0.0253038 0.0470193i
\(937\) 371.060 0.396009 0.198004 0.980201i \(-0.436554\pi\)
0.198004 + 0.980201i \(0.436554\pi\)
\(938\) −15.4031 + 92.7504i −0.0164212 + 0.0988810i
\(939\) −1133.56 −1.20720
\(940\) −2053.72 701.472i −2.18481 0.746247i
\(941\) 1075.23i 1.14265i 0.820725 + 0.571323i \(0.193570\pi\)
−0.820725 + 0.571323i \(0.806430\pi\)
\(942\) −10.2201 + 61.5407i −0.0108494 + 0.0653298i
\(943\) 322.640i 0.342142i
\(944\) 441.804 + 341.666i 0.468013 + 0.361935i
\(945\) 1103.15 1.16735
\(946\) 593.759 + 98.6059i 0.627653 + 0.104235i
\(947\) −1716.50 −1.81257 −0.906286 0.422666i \(-0.861094\pi\)
−0.906286 + 0.422666i \(0.861094\pi\)
\(948\) −133.694 + 391.420i −0.141027 + 0.412890i
\(949\) 101.714i 0.107181i
\(950\) 650.932 + 108.101i 0.685191 + 0.113790i
\(951\) 1232.57i 1.29608i
\(952\) 337.850 627.791i 0.354885 0.659444i
\(953\) −743.732 −0.780411 −0.390206 0.920728i \(-0.627596\pi\)
−0.390206 + 0.920728i \(0.627596\pi\)
\(954\) −80.3229 + 483.668i −0.0841959 + 0.506989i
\(955\) −1159.50 −1.21414
\(956\) −430.704 + 1260.99i −0.450527 + 1.31902i
\(957\) 437.824i 0.457496i
\(958\) 158.373 953.647i 0.165316 0.995457i
\(959\) 890.021i 0.928071i
\(960\) 818.119 539.973i 0.852207 0.562472i
\(961\) −883.298 −0.919145
\(962\) −71.4769 11.8702i −0.0743003 0.0123391i
\(963\) −166.169 −0.172553
\(964\) 792.965 + 270.846i 0.822578 + 0.280960i
\(965\) 555.193i 0.575330i
\(966\) −124.165 20.6202i −0.128535 0.0213459i
\(967\) 599.519i 0.619978i −0.950740 0.309989i \(-0.899675\pi\)
0.950740 0.309989i \(-0.100325\pi\)
\(968\) 547.013 + 294.379i 0.565096 + 0.304111i
\(969\) −627.829 −0.647914
\(970\) 288.944 1739.89i 0.297880 1.79370i
\(971\) 1245.45 1.28265 0.641326 0.767269i \(-0.278385\pi\)
0.641326 + 0.767269i \(0.278385\pi\)
\(972\) 695.107 + 237.421i 0.715131 + 0.244261i
\(973\) 1012.53i 1.04062i
\(974\) −59.9493 + 360.987i −0.0615496 + 0.370623i
\(975\) 74.7259i 0.0766419i
\(976\) −604.469 + 781.631i −0.619333 + 0.800852i
\(977\) 1746.19 1.78729 0.893647 0.448771i \(-0.148138\pi\)
0.893647 + 0.448771i \(0.148138\pi\)
\(978\) 639.409 + 106.187i 0.653793 + 0.108576i
\(979\) −215.857 −0.220487
\(980\) 143.156 419.124i 0.146078 0.427678i
\(981\) 617.173i 0.629126i
\(982\) −1740.03 288.968i −1.77193 0.294264i
\(983\) 914.558i 0.930375i 0.885212 + 0.465187i \(0.154013\pi\)
−0.885212 + 0.465187i \(0.845987\pi\)
\(984\) −1094.08 588.789i −1.11187 0.598363i
\(985\) 1041.27 1.05713
\(986\) 147.964 890.973i 0.150065 0.903624i
\(987\) −1073.09 −1.08723
\(988\) 38.1716 111.756i 0.0386353 0.113114i
\(989\) 219.207i 0.221645i
\(990\) −52.5384 + 316.362i −0.0530691 + 0.319558i
\(991\) 1808.51i 1.82493i −0.409151 0.912467i \(-0.634175\pi\)
0.409151 0.912467i \(-0.365825\pi\)
\(992\) −1007.44 + 934.682i −1.01556 + 0.942220i
\(993\) −1288.16 −1.29724
\(994\) 603.257 + 100.183i 0.606899 + 0.100788i
\(995\) 1456.25 1.46357
\(996\) −423.994 144.820i −0.425697 0.145401i
\(997\) 1450.57i 1.45494i 0.686141 + 0.727468i \(0.259303\pi\)
−0.686141 + 0.727468i \(0.740697\pi\)
\(998\) −973.343 161.644i −0.975294 0.161968i
\(999\) 622.632i 0.623256i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.3.g.a.139.1 44
4.3 odd 2 736.3.g.a.47.15 44
8.3 odd 2 inner 184.3.g.a.139.2 yes 44
8.5 even 2 736.3.g.a.47.16 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.3.g.a.139.1 44 1.1 even 1 trivial
184.3.g.a.139.2 yes 44 8.3 odd 2 inner
736.3.g.a.47.15 44 4.3 odd 2
736.3.g.a.47.16 44 8.5 even 2