L(s) = 1 | + (−0.325 − 0.325i)7-s + 11.7·11-s + (−3.67 + 3.67i)13-s + (11.3 + 11.3i)17-s − 30.3i·19-s + (9.55 − 9.55i)23-s + 15.3i·29-s − 21.2·31-s + (−3.10 − 3.10i)37-s − 18.2·41-s + (−19.4 + 19.4i)43-s + (27.7 + 27.7i)47-s − 48.7i·49-s + (56.8 − 56.8i)53-s + 82i·59-s + ⋯ |
L(s) = 1 | + (−0.0465 − 0.0465i)7-s + 1.07·11-s + (−0.282 + 0.282i)13-s + (0.667 + 0.667i)17-s − 1.59i·19-s + (0.415 − 0.415i)23-s + 0.530i·29-s − 0.683·31-s + (−0.0838 − 0.0838i)37-s − 0.443·41-s + (−0.451 + 0.451i)43-s + (0.590 + 0.590i)47-s − 0.995i·49-s + (1.07 − 1.07i)53-s + 1.38i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 + 0.326i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.945 + 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.122065800\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.122065800\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.325 + 0.325i)T + 49iT^{2} \) |
| 11 | \( 1 - 11.7T + 121T^{2} \) |
| 13 | \( 1 + (3.67 - 3.67i)T - 169iT^{2} \) |
| 17 | \( 1 + (-11.3 - 11.3i)T + 289iT^{2} \) |
| 19 | \( 1 + 30.3iT - 361T^{2} \) |
| 23 | \( 1 + (-9.55 + 9.55i)T - 529iT^{2} \) |
| 29 | \( 1 - 15.3iT - 841T^{2} \) |
| 31 | \( 1 + 21.2T + 961T^{2} \) |
| 37 | \( 1 + (3.10 + 3.10i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 18.2T + 1.68e3T^{2} \) |
| 43 | \( 1 + (19.4 - 19.4i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-27.7 - 27.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-56.8 + 56.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 82iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 94.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-12.7 - 12.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 77.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (90.2 - 90.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 103. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-22.8 + 22.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 159. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-56.7 - 56.7i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.942417184931799066374970763229, −8.499233617892990112208340023428, −7.21508196006075137495749772463, −6.85298777343701402634366466236, −5.85016144607590765239107067947, −4.92678824238729438810122872922, −4.04952563558638780087885239675, −3.13203376235943205349518852518, −1.93993741195009694329035882492, −0.74043426943753639741081455135,
0.905274722304856252344163841354, 2.03005754272346242522575066208, 3.33629825804808915535068965898, 3.99473963168527506903874379650, 5.17752803609039957936689399275, 5.86536083433017908167701274854, 6.79203127461152966822916512381, 7.55903974609895447419523013016, 8.320846676855008693214302751959, 9.237249190784667839788459560688