Properties

Label 1800.3.v.i
Level $1800$
Weight $3$
Character orbit 1800.v
Analytic conductor $49.046$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,3,Mod(793,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.793"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1800.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-16,0,0,0,8,0,0,0,0,0,16,0,0,0,0,0,48,0,0,0,0,0, 0,0,-124] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta_{3} + 4 \beta_{2} - 4) q^{7} + (4 \beta_{3} - 4 \beta_1 + 2) q^{11} + 3 \beta_1 q^{13} + (6 \beta_{3} - 4 \beta_{2} + 4) q^{17} + ( - 12 \beta_{3} + \beta_{2} - 12 \beta_1) q^{19} + (12 \beta_{2} + 2 \beta_1 + 12) q^{23}+ \cdots + ( - 19 \beta_{3} - 80 \beta_{2} + 80) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7} + 8 q^{11} + 16 q^{17} + 48 q^{23} - 124 q^{31} - 32 q^{37} - 112 q^{41} - 112 q^{43} + 160 q^{47} + 208 q^{53} + 300 q^{61} + 144 q^{67} + 272 q^{71} - 224 q^{73} + 112 q^{77} + 160 q^{83}+ \cdots + 320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
793.1
1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
0 0 0 0 0 −7.67423 + 7.67423i 0 0 0
793.2 0 0 0 0 0 −0.325765 + 0.325765i 0 0 0
1657.1 0 0 0 0 0 −7.67423 7.67423i 0 0 0
1657.2 0 0 0 0 0 −0.325765 0.325765i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.3.v.i 4
3.b odd 2 1 600.3.u.b 4
5.b even 2 1 1800.3.v.p 4
5.c odd 4 1 inner 1800.3.v.i 4
5.c odd 4 1 1800.3.v.p 4
12.b even 2 1 1200.3.bg.n 4
15.d odd 2 1 600.3.u.g yes 4
15.e even 4 1 600.3.u.b 4
15.e even 4 1 600.3.u.g yes 4
60.h even 2 1 1200.3.bg.c 4
60.l odd 4 1 1200.3.bg.c 4
60.l odd 4 1 1200.3.bg.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.3.u.b 4 3.b odd 2 1
600.3.u.b 4 15.e even 4 1
600.3.u.g yes 4 15.d odd 2 1
600.3.u.g yes 4 15.e even 4 1
1200.3.bg.c 4 60.h even 2 1
1200.3.bg.c 4 60.l odd 4 1
1200.3.bg.n 4 12.b even 2 1
1200.3.bg.n 4 60.l odd 4 1
1800.3.v.i 4 1.a even 1 1 trivial
1800.3.v.i 4 5.c odd 4 1 inner
1800.3.v.p 4 5.b even 2 1
1800.3.v.p 4 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{4} + 16T_{7}^{3} + 128T_{7}^{2} + 80T_{7} + 25 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 92 \) Copy content Toggle raw display
\( T_{17}^{4} - 16T_{17}^{3} + 128T_{17}^{2} + 1216T_{17} + 5776 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 16 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( (T^{2} - 4 T - 92)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 729 \) Copy content Toggle raw display
$17$ \( T^{4} - 16 T^{3} + \cdots + 5776 \) Copy content Toggle raw display
$19$ \( T^{4} + 1730 T^{2} + 744769 \) Copy content Toggle raw display
$23$ \( T^{4} - 48 T^{3} + \cdots + 76176 \) Copy content Toggle raw display
$29$ \( T^{4} + 2120 T^{2} + 446224 \) Copy content Toggle raw display
$31$ \( (T^{2} + 62 T + 865)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 32 T^{3} + \cdots + 6400 \) Copy content Toggle raw display
$41$ \( (T^{2} + 56 T + 688)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 112 T^{3} + \cdots + 2019241 \) Copy content Toggle raw display
$47$ \( T^{4} - 160 T^{3} + \cdots + 8410000 \) Copy content Toggle raw display
$53$ \( T^{4} - 208 T^{3} + \cdots + 28729600 \) Copy content Toggle raw display
$59$ \( (T^{2} + 6724)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 150 T + 5241)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 144 T^{3} + \cdots + 2277081 \) Copy content Toggle raw display
$71$ \( (T^{2} - 136 T + 4528)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 224 T^{3} + \cdots + 15366400 \) Copy content Toggle raw display
$79$ \( T^{4} + 19272 T^{2} + 91470096 \) Copy content Toggle raw display
$83$ \( T^{4} - 160 T^{3} + \cdots + 6822544 \) Copy content Toggle raw display
$89$ \( T^{4} + 39968 T^{2} + 369254656 \) Copy content Toggle raw display
$97$ \( T^{4} - 320 T^{3} + \cdots + 137288089 \) Copy content Toggle raw display
show more
show less