L(s) = 1 | + (1.18 + 0.769i)2-s + (1.70 + 0.296i)3-s + (0.815 + 1.82i)4-s + (−0.866 + 0.5i)5-s + (1.79 + 1.66i)6-s + (−3.55 − 2.05i)7-s + (−0.438 + 2.79i)8-s + (2.82 + 1.01i)9-s + (−1.41 − 0.0733i)10-s + (1.28 − 2.23i)11-s + (0.850 + 3.35i)12-s + (−1.23 − 2.14i)13-s + (−2.63 − 5.17i)14-s + (−1.62 + 0.596i)15-s + (−2.67 + 2.97i)16-s − 5.59i·17-s + ⋯ |
L(s) = 1 | + (0.838 + 0.544i)2-s + (0.985 + 0.170i)3-s + (0.407 + 0.913i)4-s + (−0.387 + 0.223i)5-s + (0.733 + 0.679i)6-s + (−1.34 − 0.775i)7-s + (−0.155 + 0.987i)8-s + (0.941 + 0.336i)9-s + (−0.446 − 0.0231i)10-s + (0.388 − 0.672i)11-s + (0.245 + 0.969i)12-s + (−0.343 − 0.595i)13-s + (−0.705 − 1.38i)14-s + (−0.419 + 0.154i)15-s + (−0.667 + 0.744i)16-s − 1.35i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 - 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.582 - 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82356 + 0.936587i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82356 + 0.936587i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.18 - 0.769i)T \) |
| 3 | \( 1 + (-1.70 - 0.296i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
good | 7 | \( 1 + (3.55 + 2.05i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.28 + 2.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.23 + 2.14i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.59iT - 17T^{2} \) |
| 19 | \( 1 - 0.255iT - 19T^{2} \) |
| 23 | \( 1 + (-3.58 - 6.21i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.78 - 2.76i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (8.20 - 4.73i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.63T + 37T^{2} \) |
| 41 | \( 1 + (3.64 - 2.10i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.55 + 1.47i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.96 + 3.41i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 4.80iT - 53T^{2} \) |
| 59 | \( 1 + (-0.413 - 0.717i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.47 + 4.28i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.51 - 4.33i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.80T + 71T^{2} \) |
| 73 | \( 1 + 1.18T + 73T^{2} \) |
| 79 | \( 1 + (-3.87 - 2.23i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.65 - 6.32i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.33iT - 89T^{2} \) |
| 97 | \( 1 + (-0.431 + 0.746i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.17743131162893234228953784206, −12.18257120910645697889123391082, −10.87640388440627812831895962205, −9.681162823811478410402833751491, −8.623867092882966214801972890565, −7.30761199988378525528904062350, −6.86392930824716810789732285411, −5.15194784195663393922790060776, −3.57816776397407274647010012209, −3.13035899496475119656551832123,
2.14103960537463941049452787258, 3.40252626475217045146080750251, 4.46119557333098154789094472908, 6.19917389969111783048891953375, 7.08174778118300654088193660656, 8.742103435067594189336804179961, 9.517116084553332514906622537470, 10.47107472641066848811263393025, 12.05207033663716144483387067427, 12.59593461440206300056212364193