L(s) = 1 | + (1.18 − 0.769i)2-s + (1.70 − 0.296i)3-s + (0.815 − 1.82i)4-s + (−0.866 − 0.5i)5-s + (1.79 − 1.66i)6-s + (−3.55 + 2.05i)7-s + (−0.438 − 2.79i)8-s + (2.82 − 1.01i)9-s + (−1.41 + 0.0733i)10-s + (1.28 + 2.23i)11-s + (0.850 − 3.35i)12-s + (−1.23 + 2.14i)13-s + (−2.63 + 5.17i)14-s + (−1.62 − 0.596i)15-s + (−2.67 − 2.97i)16-s + 5.59i·17-s + ⋯ |
L(s) = 1 | + (0.838 − 0.544i)2-s + (0.985 − 0.170i)3-s + (0.407 − 0.913i)4-s + (−0.387 − 0.223i)5-s + (0.733 − 0.679i)6-s + (−1.34 + 0.775i)7-s + (−0.155 − 0.987i)8-s + (0.941 − 0.336i)9-s + (−0.446 + 0.0231i)10-s + (0.388 + 0.672i)11-s + (0.245 − 0.969i)12-s + (−0.343 + 0.595i)13-s + (−0.705 + 1.38i)14-s + (−0.419 − 0.154i)15-s + (−0.667 − 0.744i)16-s + 1.35i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82356 - 0.936587i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82356 - 0.936587i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.18 + 0.769i)T \) |
| 3 | \( 1 + (-1.70 + 0.296i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
good | 7 | \( 1 + (3.55 - 2.05i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.28 - 2.23i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.23 - 2.14i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.59iT - 17T^{2} \) |
| 19 | \( 1 + 0.255iT - 19T^{2} \) |
| 23 | \( 1 + (-3.58 + 6.21i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.78 + 2.76i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (8.20 + 4.73i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5.63T + 37T^{2} \) |
| 41 | \( 1 + (3.64 + 2.10i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.55 - 1.47i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.96 - 3.41i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 4.80iT - 53T^{2} \) |
| 59 | \( 1 + (-0.413 + 0.717i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.47 - 4.28i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.51 + 4.33i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.80T + 71T^{2} \) |
| 73 | \( 1 + 1.18T + 73T^{2} \) |
| 79 | \( 1 + (-3.87 + 2.23i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.65 + 6.32i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.33iT - 89T^{2} \) |
| 97 | \( 1 + (-0.431 - 0.746i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.59593461440206300056212364193, −12.05207033663716144483387067427, −10.47107472641066848811263393025, −9.517116084553332514906622537470, −8.742103435067594189336804179961, −7.08174778118300654088193660656, −6.19917389969111783048891953375, −4.46119557333098154789094472908, −3.40252626475217045146080750251, −2.14103960537463941049452787258,
3.13035899496475119656551832123, 3.57816776397407274647010012209, 5.15194784195663393922790060776, 6.86392930824716810789732285411, 7.30761199988378525528904062350, 8.623867092882966214801972890565, 9.681162823811478410402833751491, 10.87640388440627812831895962205, 12.18257120910645697889123391082, 13.17743131162893234228953784206