Properties

Label 2-42e2-63.4-c1-0-39
Degree $2$
Conductor $1764$
Sign $-0.963 + 0.267i$
Analytic cond. $14.0856$
Root an. cond. $3.75308$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.473 − 1.66i)3-s + 1.90·5-s + (−2.55 − 1.57i)9-s − 3.06·11-s + (−1.13 + 1.96i)13-s + (0.901 − 3.17i)15-s + (0.713 − 1.23i)17-s + (−2.98 − 5.16i)19-s − 7.15·23-s − 1.37·25-s + (−3.83 + 3.50i)27-s + (0.468 + 0.810i)29-s + (−4.11 − 7.11i)31-s + (−1.45 + 5.10i)33-s + (−1.41 − 2.45i)37-s + ⋯
L(s)  = 1  + (0.273 − 0.961i)3-s + 0.851·5-s + (−0.850 − 0.526i)9-s − 0.924·11-s + (−0.313 + 0.543i)13-s + (0.232 − 0.818i)15-s + (0.173 − 0.299i)17-s + (−0.684 − 1.18i)19-s − 1.49·23-s − 0.275·25-s + (−0.738 + 0.674i)27-s + (0.0869 + 0.150i)29-s + (−0.738 − 1.27i)31-s + (−0.252 + 0.889i)33-s + (−0.232 − 0.403i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.963 + 0.267i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.963 + 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.963 + 0.267i$
Analytic conductor: \(14.0856\)
Root analytic conductor: \(3.75308\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1764} (949, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :1/2),\ -0.963 + 0.267i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.102096975\)
\(L(\frac12)\) \(\approx\) \(1.102096975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.473 + 1.66i)T \)
7 \( 1 \)
good5 \( 1 - 1.90T + 5T^{2} \)
11 \( 1 + 3.06T + 11T^{2} \)
13 \( 1 + (1.13 - 1.96i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-0.713 + 1.23i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.98 + 5.16i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + 7.15T + 23T^{2} \)
29 \( 1 + (-0.468 - 0.810i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (4.11 + 7.11i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.41 + 2.45i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-5.31 + 9.20i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2.98 - 5.16i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (0.483 - 0.837i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-5.45 + 9.44i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (5.68 + 9.84i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.449 + 0.778i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (0.813 + 1.40i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 2.36T + 71T^{2} \)
73 \( 1 + (-0.996 + 1.72i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-4.16 + 7.22i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-7.98 - 13.8i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-2.58 - 4.48i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.922 + 1.59i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018880539216452019717987574793, −7.978888512066807362005798882492, −7.44867232834097596291459974103, −6.50007030394600489362096081084, −5.87395201505665088748824704899, −5.02362675915125989521480061107, −3.76817791967911633487607016495, −2.34505788979854926992302462283, −2.10490832361259835569796846959, −0.35010501669598161429840818098, 1.88005116728328072058197112503, 2.80369447178129606550950928880, 3.82306469724441868759445995686, 4.74438994583461113459376765227, 5.73758649148308060582605166969, 6.00703826978846762021405412471, 7.54309538708185229701088508925, 8.171184831095651858356743921234, 8.942609980157379414576996220255, 9.854511042861858656031327587916

Graph of the $Z$-function along the critical line