L(s) = 1 | + (0.473 − 1.66i)3-s + 1.90·5-s + (−2.55 − 1.57i)9-s − 3.06·11-s + (−1.13 + 1.96i)13-s + (0.901 − 3.17i)15-s + (0.713 − 1.23i)17-s + (−2.98 − 5.16i)19-s − 7.15·23-s − 1.37·25-s + (−3.83 + 3.50i)27-s + (0.468 + 0.810i)29-s + (−4.11 − 7.11i)31-s + (−1.45 + 5.10i)33-s + (−1.41 − 2.45i)37-s + ⋯ |
L(s) = 1 | + (0.273 − 0.961i)3-s + 0.851·5-s + (−0.850 − 0.526i)9-s − 0.924·11-s + (−0.313 + 0.543i)13-s + (0.232 − 0.818i)15-s + (0.173 − 0.299i)17-s + (−0.684 − 1.18i)19-s − 1.49·23-s − 0.275·25-s + (−0.738 + 0.674i)27-s + (0.0869 + 0.150i)29-s + (−0.738 − 1.27i)31-s + (−0.252 + 0.889i)33-s + (−0.232 − 0.403i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.963 + 0.267i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.963 + 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.102096975\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.102096975\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.473 + 1.66i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.90T + 5T^{2} \) |
| 11 | \( 1 + 3.06T + 11T^{2} \) |
| 13 | \( 1 + (1.13 - 1.96i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.713 + 1.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.98 + 5.16i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 7.15T + 23T^{2} \) |
| 29 | \( 1 + (-0.468 - 0.810i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.11 + 7.11i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.41 + 2.45i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.31 + 9.20i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.98 - 5.16i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.483 - 0.837i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.45 + 9.44i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.68 + 9.84i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.449 + 0.778i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.813 + 1.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.36T + 71T^{2} \) |
| 73 | \( 1 + (-0.996 + 1.72i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.16 + 7.22i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.98 - 13.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.58 - 4.48i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.922 + 1.59i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.018880539216452019717987574793, −7.978888512066807362005798882492, −7.44867232834097596291459974103, −6.50007030394600489362096081084, −5.87395201505665088748824704899, −5.02362675915125989521480061107, −3.76817791967911633487607016495, −2.34505788979854926992302462283, −2.10490832361259835569796846959, −0.35010501669598161429840818098,
1.88005116728328072058197112503, 2.80369447178129606550950928880, 3.82306469724441868759445995686, 4.74438994583461113459376765227, 5.73758649148308060582605166969, 6.00703826978846762021405412471, 7.54309538708185229701088508925, 8.171184831095651858356743921234, 8.942609980157379414576996220255, 9.854511042861858656031327587916