L(s) = 1 | + (0.473 + 1.66i)3-s + 1.90·5-s + (−2.55 + 1.57i)9-s − 3.06·11-s + (−1.13 − 1.96i)13-s + (0.901 + 3.17i)15-s + (0.713 + 1.23i)17-s + (−2.98 + 5.16i)19-s − 7.15·23-s − 1.37·25-s + (−3.83 − 3.50i)27-s + (0.468 − 0.810i)29-s + (−4.11 + 7.11i)31-s + (−1.45 − 5.10i)33-s + (−1.41 + 2.45i)37-s + ⋯ |
L(s) = 1 | + (0.273 + 0.961i)3-s + 0.851·5-s + (−0.850 + 0.526i)9-s − 0.924·11-s + (−0.313 − 0.543i)13-s + (0.232 + 0.818i)15-s + (0.173 + 0.299i)17-s + (−0.684 + 1.18i)19-s − 1.49·23-s − 0.275·25-s + (−0.738 − 0.674i)27-s + (0.0869 − 0.150i)29-s + (−0.738 + 1.27i)31-s + (−0.252 − 0.889i)33-s + (−0.232 + 0.403i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.102096975\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.102096975\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.473 - 1.66i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.90T + 5T^{2} \) |
| 11 | \( 1 + 3.06T + 11T^{2} \) |
| 13 | \( 1 + (1.13 + 1.96i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.713 - 1.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.98 - 5.16i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.15T + 23T^{2} \) |
| 29 | \( 1 + (-0.468 + 0.810i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.11 - 7.11i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.41 - 2.45i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.31 - 9.20i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.98 + 5.16i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.483 + 0.837i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.45 - 9.44i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.68 - 9.84i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.449 - 0.778i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.813 - 1.40i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.36T + 71T^{2} \) |
| 73 | \( 1 + (-0.996 - 1.72i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.16 - 7.22i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.98 + 13.8i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.58 + 4.48i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.922 - 1.59i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.854511042861858656031327587916, −8.942609980157379414576996220255, −8.171184831095651858356743921234, −7.54309538708185229701088508925, −6.00703826978846762021405412471, −5.73758649148308060582605166969, −4.74438994583461113459376765227, −3.82306469724441868759445995686, −2.80369447178129606550950928880, −1.88005116728328072058197112503,
0.35010501669598161429840818098, 2.10490832361259835569796846959, 2.34505788979854926992302462283, 3.76817791967911633487607016495, 5.02362675915125989521480061107, 5.87395201505665088748824704899, 6.50007030394600489362096081084, 7.44867232834097596291459974103, 7.978888512066807362005798882492, 9.018880539216452019717987574793