Properties

Label 8-42e8-1.1-c1e4-0-8
Degree $8$
Conductor $9.683\times 10^{12}$
Sign $1$
Analytic cond. $39364.3$
Root an. cond. $3.75308$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s − 20·19-s + 4·25-s + 4·31-s + 20·37-s − 8·64-s − 40·76-s + 8·100-s + 4·103-s + 20·109-s − 20·121-s + 8·124-s + 127-s + 131-s + 137-s + 139-s + 40·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 4-s − 4.58·19-s + 4/5·25-s + 0.718·31-s + 3.28·37-s − 64-s − 4.58·76-s + 4/5·100-s + 0.394·103-s + 1.91·109-s − 1.81·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.28·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.153·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(39364.3\)
Root analytic conductor: \(3.75308\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.449378192\)
\(L(\frac12)\) \(\approx\) \(3.449378192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_ae_a_cc
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_u_a_ne
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \) 4.13.a_c_a_nb
17$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_aca_a_bwg
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \) 4.19.u_is_clc_mop
23$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_acy_a_dsg
29$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.29.a_em_a_hmc
31$C_2$ \( ( 1 - T + p T^{2} )^{4} \) 4.31.ae_fa_aom_jcd
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \) 4.37.au_lm_aeaq_bdmx
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \) 4.41.a_adw_a_irm
43$C_2^2$ \( ( 1 - 59 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_aeo_a_kqd
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_fk_a_nuk
53$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_gi_a_sgs
59$C_2^2$ \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \) 4.59.a_hg_a_xjq
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \) 4.61.a_afs_a_tcw
67$C_2^2$ \( ( 1 - 59 T^{2} + p^{2} T^{4} )^{2} \) 4.67.a_aeo_a_slf
71$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_aki_a_bpmk
73$C_2$ \( ( 1 - 17 T + p T^{2} )^{2}( 1 + 17 T + p T^{2} )^{2} \) 4.73.a_ala_a_bual
79$C_2^2$ \( ( 1 - 155 T^{2} + p^{2} T^{4} )^{2} \) 4.79.a_aly_a_ccad
83$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_adw_a_ycc
89$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_adw_a_bbdm
97$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.97.a_aoy_a_dfni
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.47169478361133191405892828482, −6.45910515435638773240697819269, −6.25326278828930742358600079353, −6.20852886570848871896425790395, −5.73914660609603875801311357219, −5.66011602225833131936998590975, −5.61850897855876204226254071666, −4.86224414335583847156524388372, −4.68537219181453053493284655361, −4.67111419823387410073788205638, −4.64066978945367483892715451175, −4.09986988919614786639420109537, −4.00062066839684043680095118053, −3.90848446089770691695777244188, −3.53216540539354437815959230264, −2.99346417852423039442607799818, −2.84500704331617011819116857711, −2.71591873381307932437364859599, −2.40848024512063413696628987116, −2.15517206375599919105648209805, −1.85936860019013132032101720244, −1.77458789953993893363670907177, −1.20762220676133789044944100252, −0.67024818240237012750038586797, −0.39748347633630039494090043999, 0.39748347633630039494090043999, 0.67024818240237012750038586797, 1.20762220676133789044944100252, 1.77458789953993893363670907177, 1.85936860019013132032101720244, 2.15517206375599919105648209805, 2.40848024512063413696628987116, 2.71591873381307932437364859599, 2.84500704331617011819116857711, 2.99346417852423039442607799818, 3.53216540539354437815959230264, 3.90848446089770691695777244188, 4.00062066839684043680095118053, 4.09986988919614786639420109537, 4.64066978945367483892715451175, 4.67111419823387410073788205638, 4.68537219181453053493284655361, 4.86224414335583847156524388372, 5.61850897855876204226254071666, 5.66011602225833131936998590975, 5.73914660609603875801311357219, 6.20852886570848871896425790395, 6.25326278828930742358600079353, 6.45910515435638773240697819269, 6.47169478361133191405892828482

Graph of the $Z$-function along the critical line