L(s) = 1 | + (−1.08 − 1.08i)2-s + (0.819 + 0.573i)3-s + 1.34i·4-s + (−0.266 − 1.50i)6-s + (0.376 − 0.376i)8-s + (0.342 + 0.939i)9-s + (−0.772 + 1.10i)12-s + (−0.483 − 0.483i)13-s + 0.532·16-s + (0.647 − 1.38i)18-s + (0.707 − 0.707i)23-s + (0.524 − 0.0923i)24-s + 1.04i·26-s + (−0.258 + 0.965i)27-s + 1.28·29-s + ⋯ |
L(s) = 1 | + (−1.08 − 1.08i)2-s + (0.819 + 0.573i)3-s + 1.34i·4-s + (−0.266 − 1.50i)6-s + (0.376 − 0.376i)8-s + (0.342 + 0.939i)9-s + (−0.772 + 1.10i)12-s + (−0.483 − 0.483i)13-s + 0.532·16-s + (0.647 − 1.38i)18-s + (0.707 − 0.707i)23-s + (0.524 − 0.0923i)24-s + 1.04i·26-s + (−0.258 + 0.965i)27-s + 1.28·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 + 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 + 0.461i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8516087610\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8516087610\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.819 - 0.573i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
good | 2 | \( 1 + (1.08 + 1.08i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.483 + 0.483i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 - 1.28T + T^{2} \) |
| 31 | \( 1 - 1.53T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - 1.96iT - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-1.32 - 1.32i)T + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - 0.684iT - T^{2} \) |
| 73 | \( 1 + (-0.909 - 0.909i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.610526267820456193384716625033, −8.795294374441430963657756888606, −8.230616457109572335443514999703, −7.61089068271224194687609845917, −6.41543256694776052566753869750, −5.06097752071792132925886135202, −4.22498551560566832327698144964, −2.90749227895365978601425637112, −2.67582326679568882382673623829, −1.23550940524126955659640863750,
1.04940749209577766311282084232, 2.40242659267476443135336011405, 3.55042803820947300462959710851, 4.81961817489826159655391665941, 6.01051198990078101572592482623, 6.71784022886458431329194208068, 7.34998478218364138323413172765, 7.935594941940235514081513680274, 8.771850874681024013251789190281, 9.170382203417289396745466629175