Properties

Label 1725.1.l.c
Level $1725$
Weight $1$
Character orbit 1725.l
Analytic conductor $0.861$
Analytic rank $0$
Dimension $24$
Projective image $D_{18}$
CM discriminant -23
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1725,1,Mod(68,1725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1725, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1725.68"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1725 = 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1725.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.860887146792\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{72})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{72}^{13} + \zeta_{72}^{5}) q^{2} - \zeta_{72}^{19} q^{3} + (\zeta_{72}^{26} + \cdots + \zeta_{72}^{10}) q^{4} + ( - \zeta_{72}^{32} - \zeta_{72}^{24}) q^{6} + (\zeta_{72}^{31} + \cdots - \zeta_{72}^{3}) q^{8} + \cdots + ( - \zeta_{72}^{31} - \zeta_{72}^{23}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{6} - 24 q^{16} - 12 q^{36} - 24 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1725\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-\zeta_{72}^{18}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
−0.0871557 0.996195i
−0.996195 0.0871557i
0.819152 0.573576i
−0.573576 + 0.819152i
−0.422618 0.906308i
−0.906308 0.422618i
0.906308 + 0.422618i
0.422618 + 0.906308i
0.573576 0.819152i
−0.819152 + 0.573576i
0.996195 + 0.0871557i
0.0871557 + 0.996195i
−0.0871557 + 0.996195i
−0.996195 + 0.0871557i
0.819152 + 0.573576i
−0.573576 0.819152i
−0.422618 + 0.906308i
−0.906308 + 0.422618i
0.906308 0.422618i
0.422618 0.906308i
−1.32893 1.32893i −0.996195 + 0.0871557i 2.53209i 0 1.43969 + 1.20805i 0 2.03603 2.03603i 0.984808 0.173648i 0
68.2 −1.32893 1.32893i −0.0871557 + 0.996195i 2.53209i 0 1.43969 1.20805i 0 2.03603 2.03603i −0.984808 0.173648i 0
68.3 −1.08335 1.08335i −0.573576 0.819152i 1.34730i 0 −0.266044 + 1.50881i 0 0.376244 0.376244i −0.342020 + 0.939693i 0
68.4 −1.08335 1.08335i 0.819152 + 0.573576i 1.34730i 0 −0.266044 1.50881i 0 0.376244 0.376244i 0.342020 + 0.939693i 0
68.5 −0.245576 0.245576i −0.906308 + 0.422618i 0.879385i 0 0.326352 + 0.118782i 0 −0.461531 + 0.461531i 0.642788 0.766044i 0
68.6 −0.245576 0.245576i −0.422618 + 0.906308i 0.879385i 0 0.326352 0.118782i 0 −0.461531 + 0.461531i −0.642788 0.766044i 0
68.7 0.245576 + 0.245576i 0.422618 0.906308i 0.879385i 0 0.326352 0.118782i 0 0.461531 0.461531i −0.642788 0.766044i 0
68.8 0.245576 + 0.245576i 0.906308 0.422618i 0.879385i 0 0.326352 + 0.118782i 0 0.461531 0.461531i 0.642788 0.766044i 0
68.9 1.08335 + 1.08335i −0.819152 0.573576i 1.34730i 0 −0.266044 1.50881i 0 −0.376244 + 0.376244i 0.342020 + 0.939693i 0
68.10 1.08335 + 1.08335i 0.573576 + 0.819152i 1.34730i 0 −0.266044 + 1.50881i 0 −0.376244 + 0.376244i −0.342020 + 0.939693i 0
68.11 1.32893 + 1.32893i 0.0871557 0.996195i 2.53209i 0 1.43969 1.20805i 0 −2.03603 + 2.03603i −0.984808 0.173648i 0
68.12 1.32893 + 1.32893i 0.996195 0.0871557i 2.53209i 0 1.43969 + 1.20805i 0 −2.03603 + 2.03603i 0.984808 0.173648i 0
482.1 −1.32893 + 1.32893i −0.996195 0.0871557i 2.53209i 0 1.43969 1.20805i 0 2.03603 + 2.03603i 0.984808 + 0.173648i 0
482.2 −1.32893 + 1.32893i −0.0871557 0.996195i 2.53209i 0 1.43969 + 1.20805i 0 2.03603 + 2.03603i −0.984808 + 0.173648i 0
482.3 −1.08335 + 1.08335i −0.573576 + 0.819152i 1.34730i 0 −0.266044 1.50881i 0 0.376244 + 0.376244i −0.342020 0.939693i 0
482.4 −1.08335 + 1.08335i 0.819152 0.573576i 1.34730i 0 −0.266044 + 1.50881i 0 0.376244 + 0.376244i 0.342020 0.939693i 0
482.5 −0.245576 + 0.245576i −0.906308 0.422618i 0.879385i 0 0.326352 0.118782i 0 −0.461531 0.461531i 0.642788 + 0.766044i 0
482.6 −0.245576 + 0.245576i −0.422618 0.906308i 0.879385i 0 0.326352 + 0.118782i 0 −0.461531 0.461531i −0.642788 + 0.766044i 0
482.7 0.245576 0.245576i 0.422618 + 0.906308i 0.879385i 0 0.326352 + 0.118782i 0 0.461531 + 0.461531i −0.642788 + 0.766044i 0
482.8 0.245576 0.245576i 0.906308 + 0.422618i 0.879385i 0 0.326352 0.118782i 0 0.461531 + 0.461531i 0.642788 + 0.766044i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.d odd 2 1 inner
15.e even 4 2 inner
69.c even 2 1 inner
115.c odd 2 1 inner
115.e even 4 2 inner
345.h even 2 1 inner
345.l odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1725.1.l.c 24
3.b odd 2 1 inner 1725.1.l.c 24
5.b even 2 1 inner 1725.1.l.c 24
5.c odd 4 2 inner 1725.1.l.c 24
15.d odd 2 1 inner 1725.1.l.c 24
15.e even 4 2 inner 1725.1.l.c 24
23.b odd 2 1 CM 1725.1.l.c 24
69.c even 2 1 inner 1725.1.l.c 24
115.c odd 2 1 inner 1725.1.l.c 24
115.e even 4 2 inner 1725.1.l.c 24
345.h even 2 1 inner 1725.1.l.c 24
345.l odd 4 2 inner 1725.1.l.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1725.1.l.c 24 1.a even 1 1 trivial
1725.1.l.c 24 3.b odd 2 1 inner
1725.1.l.c 24 5.b even 2 1 inner
1725.1.l.c 24 5.c odd 4 2 inner
1725.1.l.c 24 15.d odd 2 1 inner
1725.1.l.c 24 15.e even 4 2 inner
1725.1.l.c 24 23.b odd 2 1 CM
1725.1.l.c 24 69.c even 2 1 inner
1725.1.l.c 24 115.c odd 2 1 inner
1725.1.l.c 24 115.e even 4 2 inner
1725.1.l.c 24 345.h even 2 1 inner
1725.1.l.c 24 345.l odd 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 18T_{2}^{8} + 69T_{2}^{4} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1725, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{12} + 18 T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{24} - T^{12} + 1 \) Copy content Toggle raw display
$5$ \( T^{24} \) Copy content Toggle raw display
$7$ \( T^{24} \) Copy content Toggle raw display
$11$ \( T^{24} \) Copy content Toggle raw display
$13$ \( (T^{12} + 18 T^{8} + \cdots + 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{24} \) Copy content Toggle raw display
$19$ \( T^{24} \) Copy content Toggle raw display
$23$ \( (T^{4} + 1)^{6} \) Copy content Toggle raw display
$29$ \( (T^{6} - 6 T^{4} + 9 T^{2} - 3)^{4} \) Copy content Toggle raw display
$31$ \( (T^{3} - 3 T + 1)^{8} \) Copy content Toggle raw display
$37$ \( T^{24} \) Copy content Toggle raw display
$41$ \( (T^{6} + 6 T^{4} + 9 T^{2} + 3)^{4} \) Copy content Toggle raw display
$43$ \( T^{24} \) Copy content Toggle raw display
$47$ \( (T^{12} + 18 T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{24} \) Copy content Toggle raw display
$59$ \( (T^{2} - 3)^{12} \) Copy content Toggle raw display
$61$ \( T^{24} \) Copy content Toggle raw display
$67$ \( T^{24} \) Copy content Toggle raw display
$71$ \( (T^{6} + 6 T^{4} + 9 T^{2} + 3)^{4} \) Copy content Toggle raw display
$73$ \( (T^{12} + 18 T^{8} + \cdots + 9)^{2} \) Copy content Toggle raw display
$79$ \( T^{24} \) Copy content Toggle raw display
$83$ \( T^{24} \) Copy content Toggle raw display
$89$ \( T^{24} \) Copy content Toggle raw display
$97$ \( T^{24} \) Copy content Toggle raw display
show more
show less