L(s) = 1 | + (1.32 + 1.32i)2-s + (0.0871 − 0.996i)3-s + 2.53i·4-s + (1.43 − 1.20i)6-s + (−2.03 + 2.03i)8-s + (−0.984 − 0.173i)9-s + (2.52 + 0.220i)12-s + (1.39 + 1.39i)13-s − 2.87·16-s + (−1.07 − 1.53i)18-s + (0.707 − 0.707i)23-s + (1.85 + 2.20i)24-s + 3.70i·26-s + (−0.258 + 0.965i)27-s + 0.684·29-s + ⋯ |
L(s) = 1 | + (1.32 + 1.32i)2-s + (0.0871 − 0.996i)3-s + 2.53i·4-s + (1.43 − 1.20i)6-s + (−2.03 + 2.03i)8-s + (−0.984 − 0.173i)9-s + (2.52 + 0.220i)12-s + (1.39 + 1.39i)13-s − 2.87·16-s + (−1.07 − 1.53i)18-s + (0.707 − 0.707i)23-s + (1.85 + 2.20i)24-s + 3.70i·26-s + (−0.258 + 0.965i)27-s + 0.684·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0438 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0438 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.253106802\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.253106802\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.0871 + 0.996i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (-0.707 + 0.707i)T \) |
good | 2 | \( 1 + (-1.32 - 1.32i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 - 0.684T + T^{2} \) |
| 31 | \( 1 + 1.87T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + 1.28iT - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (0.245 + 0.245i)T + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 1.96iT - T^{2} \) |
| 73 | \( 1 + (-0.483 - 0.483i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.011288856435008400974068618889, −8.721669024460518908617525628568, −7.79269160757003083036911624448, −7.02489775900263883081572645037, −6.53323366036371377594955570720, −5.89017724967890002255752175324, −5.01279081823274035153579394587, −3.98939185912251884155484080773, −3.22272117669523268982206263901, −1.91304319798826999374970990231,
1.31371106965322872681505555684, 2.81448737266651728419129907381, 3.37013664662342081781124415056, 4.08838425127025574833803138456, 5.04873093088278572601802045250, 5.62300016268065515212992679489, 6.32807305847412322108177450349, 7.88785129335326860897856339236, 8.944853026529841742124789249365, 9.610054805305178593552075074093