L(s) = 1 | + (0.245 − 0.245i)2-s + (0.422 + 0.906i)3-s + 0.879i·4-s + (0.326 + 0.118i)6-s + (0.461 + 0.461i)8-s + (−0.642 + 0.766i)9-s + (−0.796 + 0.371i)12-s + (−0.909 + 0.909i)13-s − 0.652·16-s + (0.0302 + 0.345i)18-s + (−0.707 − 0.707i)23-s + (−0.223 + 0.613i)24-s + 0.446i·26-s + (−0.965 − 0.258i)27-s + 1.96·29-s + ⋯ |
L(s) = 1 | + (0.245 − 0.245i)2-s + (0.422 + 0.906i)3-s + 0.879i·4-s + (0.326 + 0.118i)6-s + (0.461 + 0.461i)8-s + (−0.642 + 0.766i)9-s + (−0.796 + 0.371i)12-s + (−0.909 + 0.909i)13-s − 0.652·16-s + (0.0302 + 0.345i)18-s + (−0.707 − 0.707i)23-s + (−0.223 + 0.613i)24-s + 0.446i·26-s + (−0.965 − 0.258i)27-s + 1.96·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.300 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.341515793\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.341515793\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.422 - 0.906i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
good | 2 | \( 1 + (-0.245 + 0.245i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.909 - 0.909i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 - 1.96T + T^{2} \) |
| 31 | \( 1 - 0.347T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 0.684iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1.08 + 1.08i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 1.28iT - T^{2} \) |
| 73 | \( 1 + (1.39 - 1.39i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.858464437746934836428891176208, −8.773125328662826957102759640147, −8.456666275991575418195796974531, −7.47465545789465013062835118534, −6.68805318452882598410373631383, −5.40247211246060421071075707928, −4.43989992541522783424739987856, −4.07968386085024458279161423459, −2.87622562287272406185040660507, −2.25846345160483832085855037261,
0.908936165133460936968583623274, 2.14929752434623699269427442878, 3.11336874043521160800842851207, 4.44089920818776276825191580465, 5.37589865170629576154392300938, 6.11873431022282621193665471841, 6.84535164053255295754212983278, 7.63111925181520640030312565655, 8.313670601576108843052614365257, 9.294581611815266922906845189360