L(s) = 1 | + (−1.08 + 1.08i)2-s + (−0.573 + 0.819i)3-s − 1.34i·4-s + (−0.266 − 1.50i)6-s + (0.376 + 0.376i)8-s + (−0.342 − 0.939i)9-s + (1.10 + 0.772i)12-s + (0.483 − 0.483i)13-s + 0.532·16-s + (1.38 + 0.647i)18-s + (0.707 + 0.707i)23-s + (−0.524 + 0.0923i)24-s + 1.04i·26-s + (0.965 + 0.258i)27-s − 1.28·29-s + ⋯ |
L(s) = 1 | + (−1.08 + 1.08i)2-s + (−0.573 + 0.819i)3-s − 1.34i·4-s + (−0.266 − 1.50i)6-s + (0.376 + 0.376i)8-s + (−0.342 − 0.939i)9-s + (1.10 + 0.772i)12-s + (0.483 − 0.483i)13-s + 0.532·16-s + (1.38 + 0.647i)18-s + (0.707 + 0.707i)23-s + (−0.524 + 0.0923i)24-s + 1.04i·26-s + (0.965 + 0.258i)27-s − 1.28·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4989096115\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4989096115\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.573 - 0.819i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
good | 2 | \( 1 + (1.08 - 1.08i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.483 + 0.483i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 + 1.28T + T^{2} \) |
| 31 | \( 1 - 1.53T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - 1.96iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-1.32 + 1.32i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 0.684iT - T^{2} \) |
| 73 | \( 1 + (0.909 - 0.909i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.747466048413068846226828111447, −8.924495410609519301722734720424, −8.343923160089566353298724393147, −7.43832197008040677888070734315, −6.64645529561306378767071148679, −5.86362958448700963021962435001, −5.28104310388019080038564664308, −4.13109630408469677655930732172, −3.07141622891403795681037575536, −1.02404571961761974461252590283,
0.78534950535080911868456228677, 1.88842193452938431891570543022, 2.71765321846907560677040876661, 3.96985442747801107311882917455, 5.24604377752460905739762367597, 6.15341866632312990525929600441, 7.05724751407479150464725766010, 7.82272041754482216448329468271, 8.660340191836063680952875132011, 9.167061597716660319093829338790