L(s) = 1 | + (−1.32 + 1.32i)2-s + (−0.0871 − 0.996i)3-s − 2.53i·4-s + (1.43 + 1.20i)6-s + (2.03 + 2.03i)8-s + (−0.984 + 0.173i)9-s + (−2.52 + 0.220i)12-s + (−1.39 + 1.39i)13-s − 2.87·16-s + (1.07 − 1.53i)18-s + (−0.707 − 0.707i)23-s + (1.85 − 2.20i)24-s − 3.70i·26-s + (0.258 + 0.965i)27-s + 0.684·29-s + ⋯ |
L(s) = 1 | + (−1.32 + 1.32i)2-s + (−0.0871 − 0.996i)3-s − 2.53i·4-s + (1.43 + 1.20i)6-s + (2.03 + 2.03i)8-s + (−0.984 + 0.173i)9-s + (−2.52 + 0.220i)12-s + (−1.39 + 1.39i)13-s − 2.87·16-s + (1.07 − 1.53i)18-s + (−0.707 − 0.707i)23-s + (1.85 − 2.20i)24-s − 3.70i·26-s + (0.258 + 0.965i)27-s + 0.684·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1743161595\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1743161595\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.0871 + 0.996i)T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
good | 2 | \( 1 + (1.32 - 1.32i)T - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.39 - 1.39i)T - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 29 | \( 1 - 0.684T + T^{2} \) |
| 31 | \( 1 + 1.87T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - 1.28iT - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.245 + 0.245i)T - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 1.96iT - T^{2} \) |
| 73 | \( 1 + (0.483 - 0.483i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.459700365586996764381486430829, −8.981850748172334097944701713422, −8.105249163833114595469804271130, −7.48938361068847792699860022872, −6.87989869195613923088769093611, −6.31328168679542663349606619009, −5.44632332218460766209123601473, −4.51520184458134635644836423014, −2.43308596367019534623189317793, −1.47364292546457334201517376529,
0.20380668910147702764961883413, 2.02699394460297100304066480539, 3.01886020266473214281181321276, 3.66876300276711372762164561766, 4.77565136299574748755104128149, 5.72970852325117639140706937610, 7.30348421013736339538781707053, 7.86821961708338816362899389581, 8.721559590061292314986505527652, 9.418655763798456500578061244646