L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + i·5-s + (2.59 − 1.5i)7-s − 0.999i·8-s + (1.5 + 2.59i)9-s + (0.5 − 0.866i)10-s + (−2.59 − 1.5i)11-s − 3·14-s + (−0.5 + 0.866i)16-s + (−2 − 3.46i)17-s − 3i·18-s + (6.06 − 3.5i)19-s + (−0.866 + 0.499i)20-s + (1.5 + 2.59i)22-s + (−2 + 3.46i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + 0.447i·5-s + (0.981 − 0.566i)7-s − 0.353i·8-s + (0.5 + 0.866i)9-s + (0.158 − 0.273i)10-s + (−0.783 − 0.452i)11-s − 0.801·14-s + (−0.125 + 0.216i)16-s + (−0.485 − 0.840i)17-s − 0.707i·18-s + (1.39 − 0.802i)19-s + (−0.193 + 0.111i)20-s + (0.319 + 0.553i)22-s + (−0.417 + 0.722i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.702 + 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.398021753\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.398021753\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-2.59 + 1.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.59 + 1.5i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2 + 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.06 + 3.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4 + 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 10iT - 31T^{2} \) |
| 37 | \( 1 + (-2.59 - 1.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.73 - i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 - 5.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - iT - 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-3.46 + 2i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7 - 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.46 + 2i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.19 + 3i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.8 + 8i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.512293116977763338237257208312, −8.245618111007755084469587407719, −7.64375055124116547620785342712, −7.35897460575907700356817633667, −6.06920369703444240244717949588, −4.98158678675071788694267795212, −4.27977547609397809671781115823, −2.93939525712789090217671066086, −2.13264137224639176780281279948, −0.78458933043696564806228940879,
1.12948816662578062265994010458, 2.07823451131039129602787859291, 3.50645858452693664003575763873, 4.76964472002307454901399210495, 5.32283139925858486269031444165, 6.32572937015522899292399836744, 7.18165083240653142150867848637, 8.028681794452184114661469580430, 8.585970772178402320096110883582, 9.287882700381742119154597940343