Properties

Label 1690.2.l.e
Level $1690$
Weight $2$
Character orbit 1690.l
Analytic conductor $13.495$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,6,2,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} - \zeta_{12}^{3} q^{5} + 3 \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + ( - 3 \zeta_{12}^{2} + 3) q^{9} + \zeta_{12}^{2} q^{10} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{11} + \cdots + 9 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 6 q^{9} + 2 q^{10} - 12 q^{14} - 2 q^{16} - 8 q^{17} + 6 q^{22} - 8 q^{23} - 4 q^{25} + 16 q^{29} + 6 q^{35} - 6 q^{36} - 28 q^{38} + 4 q^{40} + 12 q^{43} + 4 q^{49} - 36 q^{53} + 6 q^{55}+ \cdots + 14 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 1.00000i 0 2.59808 + 1.50000i 1.00000i 1.50000 2.59808i 0.500000 + 0.866025i
361.2 0.866025 0.500000i 0 0.500000 0.866025i 1.00000i 0 −2.59808 1.50000i 1.00000i 1.50000 2.59808i 0.500000 + 0.866025i
1161.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 2.59808 1.50000i 1.00000i 1.50000 + 2.59808i 0.500000 0.866025i
1161.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 −2.59808 + 1.50000i 1.00000i 1.50000 + 2.59808i 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1690.2.l.e 4
13.b even 2 1 inner 1690.2.l.e 4
13.c even 3 1 1690.2.d.c 2
13.c even 3 1 inner 1690.2.l.e 4
13.d odd 4 1 130.2.e.a 2
13.d odd 4 1 1690.2.e.h 2
13.e even 6 1 1690.2.d.c 2
13.e even 6 1 inner 1690.2.l.e 4
13.f odd 12 1 130.2.e.a 2
13.f odd 12 1 1690.2.a.c 1
13.f odd 12 1 1690.2.a.h 1
13.f odd 12 1 1690.2.e.h 2
39.f even 4 1 1170.2.i.i 2
39.k even 12 1 1170.2.i.i 2
52.f even 4 1 1040.2.q.h 2
52.l even 12 1 1040.2.q.h 2
65.f even 4 1 650.2.o.d 4
65.g odd 4 1 650.2.e.b 2
65.k even 4 1 650.2.o.d 4
65.o even 12 1 650.2.o.d 4
65.s odd 12 1 650.2.e.b 2
65.s odd 12 1 8450.2.a.g 1
65.s odd 12 1 8450.2.a.q 1
65.t even 12 1 650.2.o.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.a 2 13.d odd 4 1
130.2.e.a 2 13.f odd 12 1
650.2.e.b 2 65.g odd 4 1
650.2.e.b 2 65.s odd 12 1
650.2.o.d 4 65.f even 4 1
650.2.o.d 4 65.k even 4 1
650.2.o.d 4 65.o even 12 1
650.2.o.d 4 65.t even 12 1
1040.2.q.h 2 52.f even 4 1
1040.2.q.h 2 52.l even 12 1
1170.2.i.i 2 39.f even 4 1
1170.2.i.i 2 39.k even 12 1
1690.2.a.c 1 13.f odd 12 1
1690.2.a.h 1 13.f odd 12 1
1690.2.d.c 2 13.c even 3 1
1690.2.d.c 2 13.e even 6 1
1690.2.e.h 2 13.d odd 4 1
1690.2.e.h 2 13.f odd 12 1
1690.2.l.e 4 1.a even 1 1 trivial
1690.2.l.e 4 13.b even 2 1 inner
1690.2.l.e 4 13.c even 3 1 inner
1690.2.l.e 4 13.e even 6 1 inner
8450.2.a.g 1 65.s odd 12 1
8450.2.a.q 1 65.s odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1690, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7}^{4} - 9T_{7}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$41$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T + 9)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$61$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$71$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$73$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T - 10)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$97$ \( T^{4} - 256 T^{2} + 65536 \) Copy content Toggle raw display
show more
show less