| L(s) = 1 | + (0.5 − 0.866i)2-s + (0.300 − 0.519i)3-s + (−0.499 − 0.866i)4-s − 5-s + (−0.300 − 0.519i)6-s + (0.719 + 1.24i)7-s − 0.999·8-s + (1.31 + 2.28i)9-s + (−0.5 + 0.866i)10-s + (1.38 − 2.40i)11-s − 0.600·12-s + 1.43·14-s + (−0.300 + 0.519i)15-s + (−0.5 + 0.866i)16-s + (2.25 + 3.90i)17-s + 2.63·18-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (0.173 − 0.300i)3-s + (−0.249 − 0.433i)4-s − 0.447·5-s + (−0.122 − 0.212i)6-s + (0.272 + 0.471i)7-s − 0.353·8-s + (0.439 + 0.762i)9-s + (−0.158 + 0.273i)10-s + (0.417 − 0.723i)11-s − 0.173·12-s + 0.384·14-s + (−0.0774 + 0.134i)15-s + (−0.125 + 0.216i)16-s + (0.546 + 0.945i)17-s + 0.622·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.072660547\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.072660547\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.300 + 0.519i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.719 - 1.24i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.38 + 2.40i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.25 - 3.90i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.16 - 3.75i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.21 - 3.84i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.93 - 6.81i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.16T + 31T^{2} \) |
| 37 | \( 1 + (0.287 - 0.498i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.11 + 3.65i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.30 + 2.26i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.7T + 47T^{2} \) |
| 53 | \( 1 - 9.57T + 53T^{2} \) |
| 59 | \( 1 + (1.73 + 3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.25 - 10.8i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.66 + 4.61i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 + 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.66T + 73T^{2} \) |
| 79 | \( 1 - 12.7T + 79T^{2} \) |
| 83 | \( 1 + 10.0T + 83T^{2} \) |
| 89 | \( 1 + (-2.97 + 5.15i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.793 + 1.37i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.265358522828720705907003672386, −8.559000955006958860780981150500, −7.79619221831395712978427174995, −7.05319655463482932525186459412, −5.73488235111947815500970011104, −5.35959195368105641922147778855, −4.00908676533977475398307962296, −3.48073408357222679634859524547, −2.16774357755972990975538317326, −1.28083133988626491157738094987,
0.790651598379130612543059763347, 2.57790842416654924066127991283, 3.81518143775374627859167937129, 4.28004409671120091430707942521, 5.16183668003138475455691396151, 6.23265616471749060089079510415, 7.20991564950278603968095332949, 7.44174090785046707686405831314, 8.538444374738571832115314378910, 9.396162589099214743648448749602