| L(s) = 1 | + (0.5 + 0.866i)2-s + (0.300 + 0.519i)3-s + (−0.499 + 0.866i)4-s − 5-s + (−0.300 + 0.519i)6-s + (0.719 − 1.24i)7-s − 0.999·8-s + (1.31 − 2.28i)9-s + (−0.5 − 0.866i)10-s + (1.38 + 2.40i)11-s − 0.600·12-s + 1.43·14-s + (−0.300 − 0.519i)15-s + (−0.5 − 0.866i)16-s + (2.25 − 3.90i)17-s + 2.63·18-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (0.173 + 0.300i)3-s + (−0.249 + 0.433i)4-s − 0.447·5-s + (−0.122 + 0.212i)6-s + (0.272 − 0.471i)7-s − 0.353·8-s + (0.439 − 0.762i)9-s + (−0.158 − 0.273i)10-s + (0.417 + 0.723i)11-s − 0.173·12-s + 0.384·14-s + (−0.0774 − 0.134i)15-s + (−0.125 − 0.216i)16-s + (0.546 − 0.945i)17-s + 0.622·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 - 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.072660547\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.072660547\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.300 - 0.519i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.719 + 1.24i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.38 - 2.40i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.25 + 3.90i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.16 + 3.75i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.21 + 3.84i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.93 + 6.81i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.16T + 31T^{2} \) |
| 37 | \( 1 + (0.287 + 0.498i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.11 - 3.65i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.30 - 2.26i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 12.7T + 47T^{2} \) |
| 53 | \( 1 - 9.57T + 53T^{2} \) |
| 59 | \( 1 + (1.73 - 3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.25 + 10.8i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.66 - 4.61i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.66T + 73T^{2} \) |
| 79 | \( 1 - 12.7T + 79T^{2} \) |
| 83 | \( 1 + 10.0T + 83T^{2} \) |
| 89 | \( 1 + (-2.97 - 5.15i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.793 - 1.37i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.396162589099214743648448749602, −8.538444374738571832115314378910, −7.44174090785046707686405831314, −7.20991564950278603968095332949, −6.23265616471749060089079510415, −5.16183668003138475455691396151, −4.28004409671120091430707942521, −3.81518143775374627859167937129, −2.57790842416654924066127991283, −0.790651598379130612543059763347,
1.28083133988626491157738094987, 2.16774357755972990975538317326, 3.48073408357222679634859524547, 4.00908676533977475398307962296, 5.35959195368105641922147778855, 5.73488235111947815500970011104, 7.05319655463482932525186459412, 7.79619221831395712978427174995, 8.559000955006958860780981150500, 9.265358522828720705907003672386