Properties

Label 8-1690e4-1.1-c1e4-0-4
Degree $8$
Conductor $8.157\times 10^{12}$
Sign $1$
Analytic cond. $33163.1$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4-s + 4·5-s − 2·7-s − 2·8-s − 4·9-s + 8·10-s − 2·11-s − 4·14-s − 4·16-s + 4·17-s − 8·18-s − 10·19-s + 4·20-s − 4·22-s − 12·23-s + 10·25-s − 2·28-s − 8·29-s − 16·31-s − 2·32-s + 8·34-s − 8·35-s − 4·36-s + 6·37-s − 20·38-s − 8·40-s + ⋯
L(s)  = 1  + 1.41·2-s + 1/2·4-s + 1.78·5-s − 0.755·7-s − 0.707·8-s − 4/3·9-s + 2.52·10-s − 0.603·11-s − 1.06·14-s − 16-s + 0.970·17-s − 1.88·18-s − 2.29·19-s + 0.894·20-s − 0.852·22-s − 2.50·23-s + 2·25-s − 0.377·28-s − 1.48·29-s − 2.87·31-s − 0.353·32-s + 1.37·34-s − 1.35·35-s − 2/3·36-s + 0.986·37-s − 3.24·38-s − 1.26·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(33163.1\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.514867786\)
\(L(\frac12)\) \(\approx\) \(1.514867786\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( ( 1 - T + T^{2} )^{2} \)
5$C_1$ \( ( 1 - T )^{4} \)
13 \( 1 \)
good3$C_2^3$ \( 1 + 4 T^{2} + 7 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \) 4.3.a_e_a_h
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \) 4.7.c_al_c_fs
11$D_4\times C_2$ \( 1 + 2 T - 9 T^{2} - 18 T^{3} + 4 T^{4} - 18 p T^{5} - 9 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.11.c_aj_as_e
17$D_4\times C_2$ \( 1 - 4 T - 12 T^{2} + 24 T^{3} + 223 T^{4} + 24 p T^{5} - 12 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.17.ae_am_y_ip
19$D_4\times C_2$ \( 1 + 10 T + 47 T^{2} + 150 T^{3} + 548 T^{4} + 150 p T^{5} + 47 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8} \) 4.19.k_bv_fu_vc
23$C_2^2$ \( ( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.23.m_ck_qq_egx
29$D_4\times C_2$ \( 1 + 8 T + 30 T^{2} - 192 T^{3} - 1541 T^{4} - 192 p T^{5} + 30 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \) 4.29.i_be_ahk_achh
31$D_{4}$ \( ( 1 + 8 T + 68 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.q_hs_ciy_pok
37$D_4\times C_2$ \( 1 - 6 T - p T^{2} + 6 T^{3} + 2628 T^{4} + 6 p T^{5} - p^{3} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \) 4.37.ag_abl_g_dxc
41$D_4\times C_2$ \( 1 + 8 T + 6 T^{2} - 192 T^{3} - 941 T^{4} - 192 p T^{5} + 6 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \) 4.41.i_g_ahk_abkf
43$C_2^2$ \( ( 1 + 2 T - 39 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.e_acw_q_ifz
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \) 4.47.am_ji_acrg_bbgd
53$D_{4}$ \( ( 1 - 2 T + 97 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.53.ae_hq_axc_wwh
59$D_4\times C_2$ \( 1 + 8 T - 30 T^{2} - 192 T^{3} + 1579 T^{4} - 192 p T^{5} - 30 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \) 4.59.i_abe_ahk_cit
61$D_4\times C_2$ \( 1 + 4 T - 20 T^{2} - 344 T^{3} - 3401 T^{4} - 344 p T^{5} - 20 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.61.e_au_ang_afav
67$D_4\times C_2$ \( 1 - 8 T - 46 T^{2} + 192 T^{3} + 3323 T^{4} + 192 p T^{5} - 46 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \) 4.67.ai_abu_hk_exv
71$D_4\times C_2$ \( 1 - 4 T - 90 T^{2} + 144 T^{3} + 5059 T^{4} + 144 p T^{5} - 90 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.71.ae_adm_fo_hmp
73$D_{4}$ \( ( 1 + 12 T + 172 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.y_su_ise_dmqk
79$D_{4}$ \( ( 1 + 8 T + 84 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.q_iy_dwi_brwk
83$C_2^2$ \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_fw_a_bcyc
89$D_4\times C_2$ \( 1 + 2 T - 135 T^{2} - 78 T^{3} + 11044 T^{4} - 78 p T^{5} - 135 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.89.c_aff_ada_qiu
97$D_4\times C_2$ \( 1 - 4 T - 92 T^{2} + 344 T^{3} + 703 T^{4} + 344 p T^{5} - 92 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.97.ae_ado_ng_bbb
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.58456270256597283268203176552, −6.20815825053605016885832455107, −5.90037375158691252010879185511, −5.81296760225233516228946147717, −5.75872992768782801136843030177, −5.73575470905809499385200293515, −5.59249293165674962702922677349, −5.41803628512423703861565240626, −4.76910375395677810030618244805, −4.68291725287655225308911761241, −4.60824836313431198272917003837, −4.23417198300907107918373203153, −4.01853317262002994531600476148, −3.70106913843537200144231823593, −3.45888750452691413518644949529, −3.34256982062449950076818960894, −3.18495571913824688451816181721, −2.64132335653936571888736078969, −2.34961572065047244596005419387, −2.32810798864093202647060255604, −2.05435492968560156900319530169, −1.73713979760129143437189153737, −1.49794592868965267540392876315, −0.60150111648538423660731139334, −0.21226731422369276871985792993, 0.21226731422369276871985792993, 0.60150111648538423660731139334, 1.49794592868965267540392876315, 1.73713979760129143437189153737, 2.05435492968560156900319530169, 2.32810798864093202647060255604, 2.34961572065047244596005419387, 2.64132335653936571888736078969, 3.18495571913824688451816181721, 3.34256982062449950076818960894, 3.45888750452691413518644949529, 3.70106913843537200144231823593, 4.01853317262002994531600476148, 4.23417198300907107918373203153, 4.60824836313431198272917003837, 4.68291725287655225308911761241, 4.76910375395677810030618244805, 5.41803628512423703861565240626, 5.59249293165674962702922677349, 5.73575470905809499385200293515, 5.75872992768782801136843030177, 5.81296760225233516228946147717, 5.90037375158691252010879185511, 6.20815825053605016885832455107, 6.58456270256597283268203176552

Graph of the $Z$-function along the critical line