Properties

Label 12-1690e6-1.1-c1e6-0-10
Degree $12$
Conductor $2.330\times 10^{19}$
Sign $1$
Analytic cond. $6.03924\times 10^{6}$
Root an. cond. $3.67351$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s + 21·4-s + 4·5-s + 4·7-s + 56·8-s + 4·9-s + 24·10-s + 24·14-s + 126·16-s + 24·18-s + 84·20-s + 16·25-s + 84·28-s + 4·29-s + 252·32-s + 16·35-s + 84·36-s + 16·37-s + 224·40-s + 16·45-s + 20·47-s + 96·50-s + 224·56-s + 24·58-s + 20·61-s + 16·63-s + 462·64-s + ⋯
L(s)  = 1  + 4.24·2-s + 21/2·4-s + 1.78·5-s + 1.51·7-s + 19.7·8-s + 4/3·9-s + 7.58·10-s + 6.41·14-s + 63/2·16-s + 5.65·18-s + 18.7·20-s + 16/5·25-s + 15.8·28-s + 0.742·29-s + 44.5·32-s + 2.70·35-s + 14·36-s + 2.63·37-s + 35.4·40-s + 2.38·45-s + 2.91·47-s + 13.5·50-s + 29.9·56-s + 3.15·58-s + 2.56·61-s + 2.01·63-s + 57.7·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 5^{6} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(6.03924\times 10^{6}\)
Root analytic conductor: \(3.67351\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 5^{6} \cdot 13^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(551.1203597\)
\(L(\frac12)\) \(\approx\) \(551.1203597\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T )^{6} \)
5 \( 1 - 4 T + 18 T^{3} - 4 p^{2} T^{5} + p^{3} T^{6} \)
13 \( 1 \)
good3 \( 1 - 4 T^{2} + 16 T^{4} - 62 T^{6} + 16 p^{2} T^{8} - 4 p^{4} T^{10} + p^{6} T^{12} \)
7 \( ( 1 - 2 T + 6 T^{2} - 8 T^{3} + 6 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
11 \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{3} \)
17 \( 1 + 752 T^{4} - 50 T^{6} + 752 p^{2} T^{8} + p^{6} T^{12} \)
19 \( 1 - 22 T^{2} + 199 T^{4} - 3796 T^{6} + 199 p^{2} T^{8} - 22 p^{4} T^{10} + p^{6} T^{12} \)
23 \( 1 - 70 T^{2} + 2127 T^{4} - 47860 T^{6} + 2127 p^{2} T^{8} - 70 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 2 T + 43 T^{2} - 156 T^{3} + 43 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 82 T^{2} + 3839 T^{4} - 133596 T^{6} + 3839 p^{2} T^{8} - 82 p^{4} T^{10} + p^{6} T^{12} \)
37 \( ( 1 - 8 T + 112 T^{2} - 590 T^{3} + 112 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
41 \( 1 - 2 p T^{2} + 5999 T^{4} - 251676 T^{6} + 5999 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
43 \( 1 - 84 T^{2} + 5136 T^{4} - 202462 T^{6} + 5136 p^{2} T^{8} - 84 p^{4} T^{10} + p^{6} T^{12} \)
47 \( ( 1 - 10 T + 158 T^{2} - 932 T^{3} + 158 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
53 \( 1 - 250 T^{2} + 28167 T^{4} - 1878700 T^{6} + 28167 p^{2} T^{8} - 250 p^{4} T^{10} + p^{6} T^{12} \)
59 \( 1 - 262 T^{2} + 32279 T^{4} - 2394036 T^{6} + 32279 p^{2} T^{8} - 262 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 - 10 T + 135 T^{2} - 1252 T^{3} + 135 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( ( 1 + 12 T + 221 T^{2} + 1528 T^{3} + 221 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
71 \( 1 - 292 T^{2} + 41984 T^{4} - 3693606 T^{6} + 41984 p^{2} T^{8} - 292 p^{4} T^{10} + p^{6} T^{12} \)
73 \( ( 1 + 6 T + p T^{2} )^{6} \)
79 \( ( 1 + 28 T + 453 T^{2} + 4744 T^{3} + 453 p T^{4} + 28 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( ( 1 - 16 T + 289 T^{2} - 2496 T^{3} + 289 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
89 \( 1 - 442 T^{2} + 87839 T^{4} - 10041516 T^{6} + 87839 p^{2} T^{8} - 442 p^{4} T^{10} + p^{6} T^{12} \)
97 \( ( 1 + 26 T + 343 T^{2} + 3452 T^{3} + 343 p T^{4} + 26 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.85855478493537862800837925862, −4.71129253646843908611369572251, −4.51688806885238980277861219171, −4.49334550823596115449090682909, −4.24783197430843768694668735353, −4.20600733144575485069778031388, −4.15273436518531616801236207524, −3.97432096781888604781625691582, −3.83504363464539664999088389411, −3.56696209125989280665753961778, −3.28479080439969732131423518110, −3.06353779930961540572044933726, −2.82836891049009189456424363647, −2.79623216542306871698600483267, −2.72569933348782284009343818379, −2.72367220498407300921208038530, −2.34653198462494855883036181860, −2.15474486956818650190726832953, −1.99276106658397226537335992230, −1.57078352798726071433316745592, −1.52815895722685042948688064492, −1.48746621614121814174246702391, −1.30019465767275469182866636123, −0.960156514934724811617455245841, −0.66410200954421012276281290683, 0.66410200954421012276281290683, 0.960156514934724811617455245841, 1.30019465767275469182866636123, 1.48746621614121814174246702391, 1.52815895722685042948688064492, 1.57078352798726071433316745592, 1.99276106658397226537335992230, 2.15474486956818650190726832953, 2.34653198462494855883036181860, 2.72367220498407300921208038530, 2.72569933348782284009343818379, 2.79623216542306871698600483267, 2.82836891049009189456424363647, 3.06353779930961540572044933726, 3.28479080439969732131423518110, 3.56696209125989280665753961778, 3.83504363464539664999088389411, 3.97432096781888604781625691582, 4.15273436518531616801236207524, 4.20600733144575485069778031388, 4.24783197430843768694668735353, 4.49334550823596115449090682909, 4.51688806885238980277861219171, 4.71129253646843908611369572251, 4.85855478493537862800837925862

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.