Properties

Label 1690.2.c.d.1689.5
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.5
Root \(0.627553 + 1.14620i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.d.1689.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.29240i q^{3} +1.00000 q^{4} +(-1.91995 - 1.14620i) q^{5} +2.29240i q^{6} +1.25511 q^{7} +1.00000 q^{8} -2.25511 q^{9} +(-1.91995 - 1.14620i) q^{10} -2.00000i q^{11} +2.29240i q^{12} +1.25511 q^{14} +(2.62755 - 4.40131i) q^{15} +1.00000 q^{16} +4.80261i q^{17} -2.25511 q^{18} +5.09501i q^{19} +(-1.91995 - 1.14620i) q^{20} +2.87720i q^{21} -2.00000i q^{22} +2.58480i q^{23} +2.29240i q^{24} +(2.37245 + 4.40131i) q^{25} +1.70760i q^{27} +1.25511 q^{28} -5.09501 q^{29} +(2.62755 - 4.40131i) q^{30} +8.58480i q^{31} +1.00000 q^{32} +4.58480 q^{33} +4.80261i q^{34} +(-2.40974 - 1.43860i) q^{35} -2.25511 q^{36} +7.83991 q^{37} +5.09501i q^{38} +(-1.91995 - 1.14620i) q^{40} -9.67982i q^{41} +2.87720i q^{42} +10.8772i q^{43} -2.00000i q^{44} +(4.32970 + 2.58480i) q^{45} +2.58480i q^{46} +2.74489 q^{47} +2.29240i q^{48} -5.42471 q^{49} +(2.37245 + 4.40131i) q^{50} -11.0095 q^{51} -2.58480i q^{53} +1.70760i q^{54} +(-2.29240 + 3.83991i) q^{55} +1.25511 q^{56} -11.6798 q^{57} -5.09501 q^{58} -5.09501i q^{59} +(2.62755 - 4.40131i) q^{60} +13.6798 q^{61} +8.58480i q^{62} -2.83039 q^{63} +1.00000 q^{64} +4.58480 q^{66} -8.58480 q^{67} +4.80261i q^{68} -5.92541 q^{69} +(-2.40974 - 1.43860i) q^{70} +5.38741i q^{71} -2.25511 q^{72} -6.00000 q^{73} +7.83991 q^{74} +(-10.0896 + 5.43860i) q^{75} +5.09501i q^{76} -2.51021i q^{77} -15.0950 q^{79} +(-1.91995 - 1.14620i) q^{80} -10.6798 q^{81} -9.67982i q^{82} +11.0950 q^{83} +2.87720i q^{84} +(5.50476 - 9.22079i) q^{85} +10.8772i q^{86} -11.6798i q^{87} -2.00000i q^{88} +5.09501i q^{89} +(4.32970 + 2.58480i) q^{90} +2.58480i q^{92} -19.6798 q^{93} +2.74489 q^{94} +(5.83991 - 9.78219i) q^{95} +2.29240i q^{96} +6.26462 q^{97} -5.42471 q^{98} +4.51021i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 4 q^{5} + 4 q^{7} + 6 q^{8} - 10 q^{9} + 4 q^{10} + 4 q^{14} + 14 q^{15} + 6 q^{16} - 10 q^{18} + 4 q^{20} + 16 q^{25} + 4 q^{28} + 4 q^{29} + 14 q^{30} + 6 q^{32} - 6 q^{35} - 10 q^{36}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.29240i 1.32352i 0.749716 + 0.661759i \(0.230190\pi\)
−0.749716 + 0.661759i \(0.769810\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.91995 1.14620i −0.858630 0.512597i
\(6\) 2.29240i 0.935869i
\(7\) 1.25511 0.474385 0.237193 0.971463i \(-0.423773\pi\)
0.237193 + 0.971463i \(0.423773\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.25511 −0.751702
\(10\) −1.91995 1.14620i −0.607143 0.362461i
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 2.29240i 0.661759i
\(13\) 0 0
\(14\) 1.25511 0.335441
\(15\) 2.62755 4.40131i 0.678431 1.13641i
\(16\) 1.00000 0.250000
\(17\) 4.80261i 1.16480i 0.812901 + 0.582402i \(0.197887\pi\)
−0.812901 + 0.582402i \(0.802113\pi\)
\(18\) −2.25511 −0.531533
\(19\) 5.09501i 1.16888i 0.811438 + 0.584438i \(0.198685\pi\)
−0.811438 + 0.584438i \(0.801315\pi\)
\(20\) −1.91995 1.14620i −0.429315 0.256298i
\(21\) 2.87720i 0.627858i
\(22\) 2.00000i 0.426401i
\(23\) 2.58480i 0.538969i 0.963005 + 0.269484i \(0.0868533\pi\)
−0.963005 + 0.269484i \(0.913147\pi\)
\(24\) 2.29240i 0.467935i
\(25\) 2.37245 + 4.40131i 0.474489 + 0.880261i
\(26\) 0 0
\(27\) 1.70760i 0.328627i
\(28\) 1.25511 0.237193
\(29\) −5.09501 −0.946120 −0.473060 0.881030i \(-0.656851\pi\)
−0.473060 + 0.881030i \(0.656851\pi\)
\(30\) 2.62755 4.40131i 0.479723 0.803565i
\(31\) 8.58480i 1.54188i 0.636910 + 0.770938i \(0.280212\pi\)
−0.636910 + 0.770938i \(0.719788\pi\)
\(32\) 1.00000 0.176777
\(33\) 4.58480 0.798112
\(34\) 4.80261i 0.823641i
\(35\) −2.40974 1.43860i −0.407321 0.243168i
\(36\) −2.25511 −0.375851
\(37\) 7.83991 1.28887 0.644436 0.764658i \(-0.277092\pi\)
0.644436 + 0.764658i \(0.277092\pi\)
\(38\) 5.09501i 0.826520i
\(39\) 0 0
\(40\) −1.91995 1.14620i −0.303571 0.181230i
\(41\) 9.67982i 1.51173i −0.654726 0.755867i \(-0.727216\pi\)
0.654726 0.755867i \(-0.272784\pi\)
\(42\) 2.87720i 0.443962i
\(43\) 10.8772i 1.65876i 0.558686 + 0.829379i \(0.311306\pi\)
−0.558686 + 0.829379i \(0.688694\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 4.32970 + 2.58480i 0.645433 + 0.385320i
\(46\) 2.58480i 0.381108i
\(47\) 2.74489 0.400384 0.200192 0.979757i \(-0.435843\pi\)
0.200192 + 0.979757i \(0.435843\pi\)
\(48\) 2.29240i 0.330880i
\(49\) −5.42471 −0.774959
\(50\) 2.37245 + 4.40131i 0.335515 + 0.622439i
\(51\) −11.0095 −1.54164
\(52\) 0 0
\(53\) 2.58480i 0.355050i −0.984116 0.177525i \(-0.943191\pi\)
0.984116 0.177525i \(-0.0568091\pi\)
\(54\) 1.70760i 0.232375i
\(55\) −2.29240 + 3.83991i −0.309107 + 0.517773i
\(56\) 1.25511 0.167720
\(57\) −11.6798 −1.54703
\(58\) −5.09501 −0.669008
\(59\) 5.09501i 0.663314i −0.943400 0.331657i \(-0.892392\pi\)
0.943400 0.331657i \(-0.107608\pi\)
\(60\) 2.62755 4.40131i 0.339216 0.568206i
\(61\) 13.6798 1.75152 0.875761 0.482746i \(-0.160361\pi\)
0.875761 + 0.482746i \(0.160361\pi\)
\(62\) 8.58480i 1.09027i
\(63\) −2.83039 −0.356596
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.58480 0.564350
\(67\) −8.58480 −1.04880 −0.524400 0.851472i \(-0.675710\pi\)
−0.524400 + 0.851472i \(0.675710\pi\)
\(68\) 4.80261i 0.582402i
\(69\) −5.92541 −0.713335
\(70\) −2.40974 1.43860i −0.288020 0.171946i
\(71\) 5.38741i 0.639369i 0.947524 + 0.319684i \(0.103577\pi\)
−0.947524 + 0.319684i \(0.896423\pi\)
\(72\) −2.25511 −0.265767
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 7.83991 0.911371
\(75\) −10.0896 + 5.43860i −1.16504 + 0.627996i
\(76\) 5.09501i 0.584438i
\(77\) 2.51021i 0.286065i
\(78\) 0 0
\(79\) −15.0950 −1.69832 −0.849161 0.528134i \(-0.822892\pi\)
−0.849161 + 0.528134i \(0.822892\pi\)
\(80\) −1.91995 1.14620i −0.214657 0.128149i
\(81\) −10.6798 −1.18665
\(82\) 9.67982i 1.06896i
\(83\) 11.0950 1.21784 0.608918 0.793233i \(-0.291604\pi\)
0.608918 + 0.793233i \(0.291604\pi\)
\(84\) 2.87720i 0.313929i
\(85\) 5.50476 9.22079i 0.597075 1.00014i
\(86\) 10.8772i 1.17292i
\(87\) 11.6798i 1.25221i
\(88\) 2.00000i 0.213201i
\(89\) 5.09501i 0.540070i 0.962850 + 0.270035i \(0.0870353\pi\)
−0.962850 + 0.270035i \(0.912965\pi\)
\(90\) 4.32970 + 2.58480i 0.456390 + 0.272462i
\(91\) 0 0
\(92\) 2.58480i 0.269484i
\(93\) −19.6798 −2.04070
\(94\) 2.74489 0.283114
\(95\) 5.83991 9.78219i 0.599162 1.00363i
\(96\) 2.29240i 0.233967i
\(97\) 6.26462 0.636076 0.318038 0.948078i \(-0.396976\pi\)
0.318038 + 0.948078i \(0.396976\pi\)
\(98\) −5.42471 −0.547979
\(99\) 4.51021i 0.453293i
\(100\) 2.37245 + 4.40131i 0.237245 + 0.440131i
\(101\) 12.6594 1.25966 0.629829 0.776734i \(-0.283125\pi\)
0.629829 + 0.776734i \(0.283125\pi\)
\(102\) −11.0095 −1.09010
\(103\) 7.60522i 0.749365i −0.927153 0.374682i \(-0.877752\pi\)
0.927153 0.374682i \(-0.122248\pi\)
\(104\) 0 0
\(105\) 3.29785 5.52410i 0.321838 0.539097i
\(106\) 2.58480i 0.251058i
\(107\) 4.58480i 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(108\) 1.70760i 0.164314i
\(109\) 14.8772i 1.42498i −0.701683 0.712489i \(-0.747568\pi\)
0.701683 0.712489i \(-0.252432\pi\)
\(110\) −2.29240 + 3.83991i −0.218572 + 0.366121i
\(111\) 17.9722i 1.70585i
\(112\) 1.25511 0.118596
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) −11.6798 −1.09392
\(115\) 2.96270 4.96270i 0.276274 0.462774i
\(116\) −5.09501 −0.473060
\(117\) 0 0
\(118\) 5.09501i 0.469034i
\(119\) 6.02778i 0.552566i
\(120\) 2.62755 4.40131i 0.239862 0.401782i
\(121\) 7.00000 0.636364
\(122\) 13.6798 1.23851
\(123\) 22.1900 2.00081
\(124\) 8.58480i 0.770938i
\(125\) 0.489790 11.1696i 0.0438081 0.999040i
\(126\) −2.83039 −0.252152
\(127\) 1.41520i 0.125578i 0.998027 + 0.0627892i \(0.0199996\pi\)
−0.998027 + 0.0627892i \(0.980000\pi\)
\(128\) 1.00000 0.0883883
\(129\) −24.9349 −2.19540
\(130\) 0 0
\(131\) 11.0095 0.961906 0.480953 0.876746i \(-0.340291\pi\)
0.480953 + 0.876746i \(0.340291\pi\)
\(132\) 4.58480 0.399056
\(133\) 6.39478i 0.554497i
\(134\) −8.58480 −0.741614
\(135\) 1.95725 3.27851i 0.168453 0.282169i
\(136\) 4.80261i 0.411821i
\(137\) −14.5848 −1.24606 −0.623032 0.782196i \(-0.714099\pi\)
−0.623032 + 0.782196i \(0.714099\pi\)
\(138\) −5.92541 −0.504404
\(139\) −7.32970 −0.621697 −0.310848 0.950459i \(-0.600613\pi\)
−0.310848 + 0.950459i \(0.600613\pi\)
\(140\) −2.40974 1.43860i −0.203661 0.121584i
\(141\) 6.29240i 0.529916i
\(142\) 5.38741i 0.452102i
\(143\) 0 0
\(144\) −2.25511 −0.187925
\(145\) 9.78219 + 5.83991i 0.812367 + 0.484978i
\(146\) −6.00000 −0.496564
\(147\) 12.4356i 1.02567i
\(148\) 7.83991 0.644436
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −10.0896 + 5.43860i −0.823809 + 0.444060i
\(151\) 14.5570i 1.18463i 0.805705 + 0.592317i \(0.201787\pi\)
−0.805705 + 0.592317i \(0.798213\pi\)
\(152\) 5.09501i 0.413260i
\(153\) 10.8304i 0.875585i
\(154\) 2.51021i 0.202278i
\(155\) 9.83991 16.4824i 0.790360 1.32390i
\(156\) 0 0
\(157\) 13.0950i 1.04510i −0.852610 0.522548i \(-0.824982\pi\)
0.852610 0.522548i \(-0.175018\pi\)
\(158\) −15.0950 −1.20089
\(159\) 5.92541 0.469915
\(160\) −1.91995 1.14620i −0.151786 0.0906151i
\(161\) 3.24420i 0.255679i
\(162\) −10.6798 −0.839086
\(163\) 12.2646 0.960639 0.480320 0.877094i \(-0.340521\pi\)
0.480320 + 0.877094i \(0.340521\pi\)
\(164\) 9.67982i 0.755867i
\(165\) −8.80261 5.25511i −0.685282 0.409109i
\(166\) 11.0950 0.861140
\(167\) 18.3392 1.41913 0.709565 0.704640i \(-0.248891\pi\)
0.709565 + 0.704640i \(0.248891\pi\)
\(168\) 2.87720i 0.221981i
\(169\) 0 0
\(170\) 5.50476 9.22079i 0.422196 0.707203i
\(171\) 11.4898i 0.878646i
\(172\) 10.8772i 0.829379i
\(173\) 9.41520i 0.715824i 0.933755 + 0.357912i \(0.116511\pi\)
−0.933755 + 0.357912i \(0.883489\pi\)
\(174\) 11.6798i 0.885445i
\(175\) 2.97767 + 5.52410i 0.225091 + 0.417583i
\(176\) 2.00000i 0.150756i
\(177\) 11.6798 0.877909
\(178\) 5.09501i 0.381887i
\(179\) −7.32970 −0.547847 −0.273924 0.961751i \(-0.588322\pi\)
−0.273924 + 0.961751i \(0.588322\pi\)
\(180\) 4.32970 + 2.58480i 0.322717 + 0.192660i
\(181\) −11.7544 −0.873698 −0.436849 0.899535i \(-0.643906\pi\)
−0.436849 + 0.899535i \(0.643906\pi\)
\(182\) 0 0
\(183\) 31.3596i 2.31817i
\(184\) 2.58480i 0.190554i
\(185\) −15.0523 8.98611i −1.10666 0.660672i
\(186\) −19.6798 −1.44299
\(187\) 9.60522 0.702403
\(188\) 2.74489 0.200192
\(189\) 2.14322i 0.155896i
\(190\) 5.83991 9.78219i 0.423671 0.709675i
\(191\) −1.60522 −0.116150 −0.0580749 0.998312i \(-0.518496\pi\)
−0.0580749 + 0.998312i \(0.518496\pi\)
\(192\) 2.29240i 0.165440i
\(193\) −15.7544 −1.13403 −0.567014 0.823708i \(-0.691901\pi\)
−0.567014 + 0.823708i \(0.691901\pi\)
\(194\) 6.26462 0.449773
\(195\) 0 0
\(196\) −5.42471 −0.387479
\(197\) −1.00951 −0.0719249 −0.0359625 0.999353i \(-0.511450\pi\)
−0.0359625 + 0.999353i \(0.511450\pi\)
\(198\) 4.51021i 0.320527i
\(199\) 0.435617 0.0308801 0.0154400 0.999881i \(-0.495085\pi\)
0.0154400 + 0.999881i \(0.495085\pi\)
\(200\) 2.37245 + 4.40131i 0.167757 + 0.311219i
\(201\) 19.6798i 1.38811i
\(202\) 12.6594 0.890712
\(203\) −6.39478 −0.448825
\(204\) −11.0095 −0.770820
\(205\) −11.0950 + 18.5848i −0.774909 + 1.29802i
\(206\) 7.60522i 0.529881i
\(207\) 5.82900i 0.405144i
\(208\) 0 0
\(209\) 10.1900 0.704859
\(210\) 3.29785 5.52410i 0.227574 0.381199i
\(211\) 16.3501 1.12559 0.562794 0.826597i \(-0.309726\pi\)
0.562794 + 0.826597i \(0.309726\pi\)
\(212\) 2.58480i 0.177525i
\(213\) −12.3501 −0.846216
\(214\) 4.58480i 0.313411i
\(215\) 12.4675 20.8837i 0.850274 1.42426i
\(216\) 1.70760i 0.116187i
\(217\) 10.7748i 0.731443i
\(218\) 14.8772i 1.00761i
\(219\) 13.7544i 0.929437i
\(220\) −2.29240 + 3.83991i −0.154554 + 0.258887i
\(221\) 0 0
\(222\) 17.9722i 1.20622i
\(223\) 21.7843 1.45879 0.729394 0.684094i \(-0.239802\pi\)
0.729394 + 0.684094i \(0.239802\pi\)
\(224\) 1.25511 0.0838602
\(225\) −5.35012 9.92541i −0.356675 0.661694i
\(226\) 4.00000i 0.266076i
\(227\) −9.02042 −0.598706 −0.299353 0.954142i \(-0.596771\pi\)
−0.299353 + 0.954142i \(0.596771\pi\)
\(228\) −11.6798 −0.773515
\(229\) 4.68718i 0.309737i 0.987935 + 0.154869i \(0.0494955\pi\)
−0.987935 + 0.154869i \(0.950505\pi\)
\(230\) 2.96270 4.96270i 0.195355 0.327231i
\(231\) 5.75441 0.378612
\(232\) −5.09501 −0.334504
\(233\) 13.5366i 0.886812i −0.896321 0.443406i \(-0.853770\pi\)
0.896321 0.443406i \(-0.146230\pi\)
\(234\) 0 0
\(235\) −5.27007 3.14620i −0.343782 0.205236i
\(236\) 5.09501i 0.331657i
\(237\) 34.6038i 2.24776i
\(238\) 6.02778i 0.390723i
\(239\) 3.19739i 0.206822i −0.994639 0.103411i \(-0.967024\pi\)
0.994639 0.103411i \(-0.0329757\pi\)
\(240\) 2.62755 4.40131i 0.169608 0.284103i
\(241\) 14.1154i 0.909255i −0.890682 0.454627i \(-0.849772\pi\)
0.890682 0.454627i \(-0.150228\pi\)
\(242\) 7.00000 0.449977
\(243\) 19.3596i 1.24192i
\(244\) 13.6798 0.875761
\(245\) 10.4152 + 6.21781i 0.665403 + 0.397241i
\(246\) 22.1900 1.41478
\(247\) 0 0
\(248\) 8.58480i 0.545136i
\(249\) 25.4342i 1.61183i
\(250\) 0.489790 11.1696i 0.0309770 0.706428i
\(251\) 21.1696 1.33621 0.668107 0.744065i \(-0.267105\pi\)
0.668107 + 0.744065i \(0.267105\pi\)
\(252\) −2.83039 −0.178298
\(253\) 5.16961 0.325010
\(254\) 1.41520i 0.0887973i
\(255\) 21.1378 + 12.6191i 1.32370 + 0.790240i
\(256\) 1.00000 0.0625000
\(257\) 8.21781i 0.512613i 0.966596 + 0.256306i \(0.0825056\pi\)
−0.966596 + 0.256306i \(0.917494\pi\)
\(258\) −24.9349 −1.55238
\(259\) 9.83991 0.611422
\(260\) 0 0
\(261\) 11.4898 0.711200
\(262\) 11.0095 0.680170
\(263\) 4.51021i 0.278111i −0.990285 0.139056i \(-0.955593\pi\)
0.990285 0.139056i \(-0.0444067\pi\)
\(264\) 4.58480 0.282175
\(265\) −2.96270 + 4.96270i −0.181997 + 0.304856i
\(266\) 6.39478i 0.392089i
\(267\) −11.6798 −0.714793
\(268\) −8.58480 −0.524400
\(269\) 8.51021 0.518877 0.259438 0.965760i \(-0.416463\pi\)
0.259438 + 0.965760i \(0.416463\pi\)
\(270\) 1.95725 3.27851i 0.119114 0.199524i
\(271\) 4.95180i 0.300800i −0.988625 0.150400i \(-0.951944\pi\)
0.988625 0.150400i \(-0.0480562\pi\)
\(272\) 4.80261i 0.291201i
\(273\) 0 0
\(274\) −14.5848 −0.881100
\(275\) 8.80261 4.74489i 0.530817 0.286128i
\(276\) −5.92541 −0.356668
\(277\) 19.8698i 1.19386i 0.802292 + 0.596932i \(0.203614\pi\)
−0.802292 + 0.596932i \(0.796386\pi\)
\(278\) −7.32970 −0.439606
\(279\) 19.3596i 1.15903i
\(280\) −2.40974 1.43860i −0.144010 0.0859729i
\(281\) 30.2646i 1.80544i −0.430233 0.902718i \(-0.641569\pi\)
0.430233 0.902718i \(-0.358431\pi\)
\(282\) 6.29240i 0.374707i
\(283\) 26.9240i 1.60047i −0.599689 0.800233i \(-0.704709\pi\)
0.599689 0.800233i \(-0.295291\pi\)
\(284\) 5.38741i 0.319684i
\(285\) 22.4247 + 13.3874i 1.32833 + 0.793002i
\(286\) 0 0
\(287\) 12.1492i 0.717144i
\(288\) −2.25511 −0.132883
\(289\) −6.06508 −0.356769
\(290\) 9.78219 + 5.83991i 0.574430 + 0.342931i
\(291\) 14.3610i 0.841858i
\(292\) −6.00000 −0.351123
\(293\) 5.18051 0.302649 0.151324 0.988484i \(-0.451646\pi\)
0.151324 + 0.988484i \(0.451646\pi\)
\(294\) 12.4356i 0.725260i
\(295\) −5.83991 + 9.78219i −0.340013 + 0.569541i
\(296\) 7.83991 0.455685
\(297\) 3.41520 0.198170
\(298\) 0 0
\(299\) 0 0
\(300\) −10.0896 + 5.43860i −0.582521 + 0.313998i
\(301\) 13.6520i 0.786890i
\(302\) 14.5570i 0.837662i
\(303\) 29.0204i 1.66718i
\(304\) 5.09501i 0.292219i
\(305\) −26.2646 15.6798i −1.50391 0.897824i
\(306\) 10.8304i 0.619132i
\(307\) 0.320184 0.0182738 0.00913692 0.999958i \(-0.497092\pi\)
0.00913692 + 0.999958i \(0.497092\pi\)
\(308\) 2.51021i 0.143032i
\(309\) 17.4342 0.991798
\(310\) 9.83991 16.4824i 0.558869 0.936139i
\(311\) 9.86984 0.559667 0.279834 0.960048i \(-0.409721\pi\)
0.279834 + 0.960048i \(0.409721\pi\)
\(312\) 0 0
\(313\) 10.6126i 0.599859i 0.953961 + 0.299929i \(0.0969631\pi\)
−0.953961 + 0.299929i \(0.903037\pi\)
\(314\) 13.0950i 0.738994i
\(315\) 5.43423 + 3.24420i 0.306184 + 0.182790i
\(316\) −15.0950 −0.849161
\(317\) −12.1900 −0.684660 −0.342330 0.939580i \(-0.611216\pi\)
−0.342330 + 0.939580i \(0.611216\pi\)
\(318\) 5.92541 0.332280
\(319\) 10.1900i 0.570532i
\(320\) −1.91995 1.14620i −0.107329 0.0640746i
\(321\) 10.5102 0.586623
\(322\) 3.24420i 0.180792i
\(323\) −24.4694 −1.36151
\(324\) −10.6798 −0.593323
\(325\) 0 0
\(326\) 12.2646 0.679274
\(327\) 34.1045 1.88598
\(328\) 9.67982i 0.534478i
\(329\) 3.44513 0.189936
\(330\) −8.80261 5.25511i −0.484568 0.289284i
\(331\) 17.9444i 0.986315i −0.869940 0.493158i \(-0.835843\pi\)
0.869940 0.493158i \(-0.164157\pi\)
\(332\) 11.0950 0.608918
\(333\) −17.6798 −0.968848
\(334\) 18.3392 1.00348
\(335\) 16.4824 + 9.83991i 0.900531 + 0.537612i
\(336\) 2.87720i 0.156964i
\(337\) 20.9518i 1.14132i 0.821187 + 0.570659i \(0.193312\pi\)
−0.821187 + 0.570659i \(0.806688\pi\)
\(338\) 0 0
\(339\) −9.16961 −0.498025
\(340\) 5.50476 9.22079i 0.298537 0.500068i
\(341\) 17.1696 0.929786
\(342\) 11.4898i 0.621297i
\(343\) −15.5943 −0.842014
\(344\) 10.8772i 0.586460i
\(345\) 11.3765 + 6.79171i 0.612491 + 0.365653i
\(346\) 9.41520i 0.506164i
\(347\) 3.51757i 0.188833i 0.995533 + 0.0944166i \(0.0300986\pi\)
−0.995533 + 0.0944166i \(0.969901\pi\)
\(348\) 11.6798i 0.626104i
\(349\) 17.8568i 0.955852i 0.878400 + 0.477926i \(0.158611\pi\)
−0.878400 + 0.477926i \(0.841389\pi\)
\(350\) 2.97767 + 5.52410i 0.159163 + 0.295276i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) −36.9240 −1.96527 −0.982634 0.185557i \(-0.940591\pi\)
−0.982634 + 0.185557i \(0.940591\pi\)
\(354\) 11.6798 0.620775
\(355\) 6.17506 10.3436i 0.327738 0.548981i
\(356\) 5.09501i 0.270035i
\(357\) −13.8181 −0.731331
\(358\) −7.32970 −0.387387
\(359\) 6.77483i 0.357562i −0.983889 0.178781i \(-0.942785\pi\)
0.983889 0.178781i \(-0.0572153\pi\)
\(360\) 4.32970 + 2.58480i 0.228195 + 0.136231i
\(361\) −6.95916 −0.366272
\(362\) −11.7544 −0.617798
\(363\) 16.0468i 0.842239i
\(364\) 0 0
\(365\) 11.5197 + 6.87720i 0.602970 + 0.359969i
\(366\) 31.3596i 1.63919i
\(367\) 7.80997i 0.407677i −0.979004 0.203839i \(-0.934658\pi\)
0.979004 0.203839i \(-0.0653418\pi\)
\(368\) 2.58480i 0.134742i
\(369\) 21.8290i 1.13637i
\(370\) −15.0523 8.98611i −0.782530 0.467166i
\(371\) 3.24420i 0.168430i
\(372\) −19.6798 −1.02035
\(373\) 15.8698i 0.821709i 0.911701 + 0.410855i \(0.134770\pi\)
−0.911701 + 0.410855i \(0.865230\pi\)
\(374\) 9.60522 0.496674
\(375\) 25.6052 + 1.12280i 1.32225 + 0.0579809i
\(376\) 2.74489 0.141557
\(377\) 0 0
\(378\) 2.14322i 0.110235i
\(379\) 16.7748i 0.861665i 0.902432 + 0.430833i \(0.141780\pi\)
−0.902432 + 0.430833i \(0.858220\pi\)
\(380\) 5.83991 9.78219i 0.299581 0.501816i
\(381\) −3.24420 −0.166205
\(382\) −1.60522 −0.0821304
\(383\) −16.6147 −0.848973 −0.424487 0.905434i \(-0.639545\pi\)
−0.424487 + 0.905434i \(0.639545\pi\)
\(384\) 2.29240i 0.116984i
\(385\) −2.87720 + 4.81949i −0.146636 + 0.245624i
\(386\) −15.7544 −0.801878
\(387\) 24.5292i 1.24689i
\(388\) 6.26462 0.318038
\(389\) 36.7193 1.86174 0.930870 0.365350i \(-0.119051\pi\)
0.930870 + 0.365350i \(0.119051\pi\)
\(390\) 0 0
\(391\) −12.4138 −0.627793
\(392\) −5.42471 −0.273989
\(393\) 25.2382i 1.27310i
\(394\) −1.00951 −0.0508586
\(395\) 28.9817 + 17.3019i 1.45823 + 0.870554i
\(396\) 4.51021i 0.226647i
\(397\) 29.2104 1.46603 0.733015 0.680212i \(-0.238112\pi\)
0.733015 + 0.680212i \(0.238112\pi\)
\(398\) 0.435617 0.0218355
\(399\) −14.6594 −0.733888
\(400\) 2.37245 + 4.40131i 0.118622 + 0.220065i
\(401\) 15.6052i 0.779288i −0.920966 0.389644i \(-0.872598\pi\)
0.920966 0.389644i \(-0.127402\pi\)
\(402\) 19.6798i 0.981540i
\(403\) 0 0
\(404\) 12.6594 0.629829
\(405\) 20.5048 + 12.2412i 1.01889 + 0.608271i
\(406\) −6.39478 −0.317367
\(407\) 15.6798i 0.777220i
\(408\) −11.0095 −0.545052
\(409\) 13.7952i 0.682131i −0.940039 0.341066i \(-0.889212\pi\)
0.940039 0.341066i \(-0.110788\pi\)
\(410\) −11.0950 + 18.5848i −0.547944 + 0.917838i
\(411\) 33.4342i 1.64919i
\(412\) 7.60522i 0.374682i
\(413\) 6.39478i 0.314666i
\(414\) 5.82900i 0.286480i
\(415\) −21.3019 12.7171i −1.04567 0.624259i
\(416\) 0 0
\(417\) 16.8026i 0.822827i
\(418\) 10.1900 0.498410
\(419\) 30.6893 1.49927 0.749636 0.661850i \(-0.230229\pi\)
0.749636 + 0.661850i \(0.230229\pi\)
\(420\) 3.29785 5.52410i 0.160919 0.269549i
\(421\) 16.9180i 0.824535i −0.911063 0.412268i \(-0.864737\pi\)
0.911063 0.412268i \(-0.135263\pi\)
\(422\) 16.3501 0.795911
\(423\) −6.19003 −0.300969
\(424\) 2.58480i 0.125529i
\(425\) −21.1378 + 11.3939i −1.02533 + 0.552687i
\(426\) −12.3501 −0.598365
\(427\) 17.1696 0.830895
\(428\) 4.58480i 0.221615i
\(429\) 0 0
\(430\) 12.4675 20.8837i 0.601234 1.00710i
\(431\) 17.9722i 0.865691i −0.901468 0.432846i \(-0.857510\pi\)
0.901468 0.432846i \(-0.142490\pi\)
\(432\) 1.70760i 0.0821569i
\(433\) 2.61259i 0.125553i 0.998028 + 0.0627764i \(0.0199955\pi\)
−0.998028 + 0.0627764i \(0.980004\pi\)
\(434\) 10.7748i 0.517208i
\(435\) −13.3874 + 22.4247i −0.641877 + 1.07518i
\(436\) 14.8772i 0.712489i
\(437\) −13.1696 −0.629988
\(438\) 13.7544i 0.657211i
\(439\) 14.6594 0.699655 0.349827 0.936814i \(-0.386240\pi\)
0.349827 + 0.936814i \(0.386240\pi\)
\(440\) −2.29240 + 3.83991i −0.109286 + 0.183060i
\(441\) 12.2333 0.582538
\(442\) 0 0
\(443\) 8.33324i 0.395924i −0.980210 0.197962i \(-0.936568\pi\)
0.980210 0.197962i \(-0.0634323\pi\)
\(444\) 17.9722i 0.852924i
\(445\) 5.83991 9.78219i 0.276838 0.463720i
\(446\) 21.7843 1.03152
\(447\) 0 0
\(448\) 1.25511 0.0592981
\(449\) 4.04084i 0.190699i −0.995444 0.0953495i \(-0.969603\pi\)
0.995444 0.0953495i \(-0.0303969\pi\)
\(450\) −5.35012 9.92541i −0.252207 0.467888i
\(451\) −19.3596 −0.911610
\(452\) 4.00000i 0.188144i
\(453\) −33.3705 −1.56788
\(454\) −9.02042 −0.423349
\(455\) 0 0
\(456\) −11.6798 −0.546958
\(457\) 0.979580 0.0458228 0.0229114 0.999737i \(-0.492706\pi\)
0.0229114 + 0.999737i \(0.492706\pi\)
\(458\) 4.68718i 0.219017i
\(459\) −8.20093 −0.382787
\(460\) 2.96270 4.96270i 0.138137 0.231387i
\(461\) 10.7280i 0.499654i 0.968291 + 0.249827i \(0.0803737\pi\)
−0.968291 + 0.249827i \(0.919626\pi\)
\(462\) 5.75441 0.267719
\(463\) −23.2104 −1.07868 −0.539340 0.842088i \(-0.681326\pi\)
−0.539340 + 0.842088i \(0.681326\pi\)
\(464\) −5.09501 −0.236530
\(465\) 37.7843 + 22.5570i 1.75221 + 1.04606i
\(466\) 13.5366i 0.627071i
\(467\) 28.5848i 1.32275i −0.750057 0.661373i \(-0.769974\pi\)
0.750057 0.661373i \(-0.230026\pi\)
\(468\) 0 0
\(469\) −10.7748 −0.497535
\(470\) −5.27007 3.14620i −0.243090 0.145123i
\(471\) 30.0190 1.38320
\(472\) 5.09501i 0.234517i
\(473\) 21.7544 1.00027
\(474\) 34.6038i 1.58941i
\(475\) −22.4247 + 12.0877i −1.02892 + 0.554619i
\(476\) 6.02778i 0.276283i
\(477\) 5.82900i 0.266892i
\(478\) 3.19739i 0.146245i
\(479\) 30.4078i 1.38937i −0.719314 0.694685i \(-0.755544\pi\)
0.719314 0.694685i \(-0.244456\pi\)
\(480\) 2.62755 4.40131i 0.119931 0.200891i
\(481\) 0 0
\(482\) 14.1154i 0.642940i
\(483\) −7.43701 −0.338396
\(484\) 7.00000 0.318182
\(485\) −12.0278 7.18051i −0.546153 0.326050i
\(486\) 19.3596i 0.878171i
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 13.6798 0.619256
\(489\) 28.1154i 1.27142i
\(490\) 10.4152 + 6.21781i 0.470511 + 0.280892i
\(491\) −22.6893 −1.02396 −0.511978 0.858999i \(-0.671087\pi\)
−0.511978 + 0.858999i \(0.671087\pi\)
\(492\) 22.1900 1.00040
\(493\) 24.4694i 1.10204i
\(494\) 0 0
\(495\) 5.16961 8.65940i 0.232357 0.389211i
\(496\) 8.58480i 0.385469i
\(497\) 6.76177i 0.303307i
\(498\) 25.4342i 1.13973i
\(499\) 31.8698i 1.42669i −0.700813 0.713345i \(-0.747179\pi\)
0.700813 0.713345i \(-0.252821\pi\)
\(500\) 0.489790 11.1696i 0.0219041 0.499520i
\(501\) 42.0408i 1.87825i
\(502\) 21.1696 0.944846
\(503\) 14.2646i 0.636028i −0.948086 0.318014i \(-0.896984\pi\)
0.948086 0.318014i \(-0.103016\pi\)
\(504\) −2.83039 −0.126076
\(505\) −24.3055 14.5102i −1.08158 0.645696i
\(506\) 5.16961 0.229817
\(507\) 0 0
\(508\) 1.41520i 0.0627892i
\(509\) 23.3596i 1.03540i −0.855563 0.517699i \(-0.826789\pi\)
0.855563 0.517699i \(-0.173211\pi\)
\(510\) 21.1378 + 12.6191i 0.935996 + 0.558784i
\(511\) −7.53063 −0.333135
\(512\) 1.00000 0.0441942
\(513\) −8.70024 −0.384125
\(514\) 8.21781i 0.362472i
\(515\) −8.71711 + 14.6017i −0.384122 + 0.643427i
\(516\) −24.9349 −1.09770
\(517\) 5.48979i 0.241441i
\(518\) 9.83991 0.432341
\(519\) −21.5834 −0.947407
\(520\) 0 0
\(521\) −40.4247 −1.77104 −0.885519 0.464602i \(-0.846197\pi\)
−0.885519 + 0.464602i \(0.846197\pi\)
\(522\) 11.4898 0.502894
\(523\) 37.9853i 1.66098i 0.557033 + 0.830490i \(0.311940\pi\)
−0.557033 + 0.830490i \(0.688060\pi\)
\(524\) 11.0095 0.480953
\(525\) −12.6635 + 6.82602i −0.552679 + 0.297912i
\(526\) 4.51021i 0.196655i
\(527\) −41.2295 −1.79598
\(528\) 4.58480 0.199528
\(529\) 16.3188 0.709513
\(530\) −2.96270 + 4.96270i −0.128692 + 0.215566i
\(531\) 11.4898i 0.498614i
\(532\) 6.39478i 0.277249i
\(533\) 0 0
\(534\) −11.6798 −0.505435
\(535\) −5.25511 + 8.80261i −0.227198 + 0.380570i
\(536\) −8.58480 −0.370807
\(537\) 16.8026i 0.725086i
\(538\) 8.51021 0.366901
\(539\) 10.8494i 0.467318i
\(540\) 1.95725 3.27851i 0.0842267 0.141085i
\(541\) 26.8772i 1.15554i −0.816199 0.577771i \(-0.803923\pi\)
0.816199 0.577771i \(-0.196077\pi\)
\(542\) 4.95180i 0.212698i
\(543\) 26.9458i 1.15636i
\(544\) 4.80261i 0.205910i
\(545\) −17.0523 + 28.5636i −0.730439 + 1.22353i
\(546\) 0 0
\(547\) 19.8976i 0.850761i −0.905015 0.425381i \(-0.860140\pi\)
0.905015 0.425381i \(-0.139860\pi\)
\(548\) −14.5848 −0.623032
\(549\) −30.8494 −1.31662
\(550\) 8.80261 4.74489i 0.375345 0.202323i
\(551\) 25.9592i 1.10590i
\(552\) −5.92541 −0.252202
\(553\) −18.9458 −0.805659
\(554\) 19.8698i 0.844189i
\(555\) 20.5998 34.5058i 0.874412 1.46469i
\(556\) −7.32970 −0.310848
\(557\) 1.50070 0.0635865 0.0317933 0.999494i \(-0.489878\pi\)
0.0317933 + 0.999494i \(0.489878\pi\)
\(558\) 19.3596i 0.819559i
\(559\) 0 0
\(560\) −2.40974 1.43860i −0.101830 0.0607920i
\(561\) 22.0190i 0.929644i
\(562\) 30.2646i 1.27664i
\(563\) 20.6872i 0.871861i 0.899980 + 0.435930i \(0.143581\pi\)
−0.899980 + 0.435930i \(0.856419\pi\)
\(564\) 6.29240i 0.264958i
\(565\) 4.58480 7.67982i 0.192884 0.323092i
\(566\) 26.9240i 1.13170i
\(567\) −13.4043 −0.562927
\(568\) 5.38741i 0.226051i
\(569\) −6.08550 −0.255117 −0.127559 0.991831i \(-0.540714\pi\)
−0.127559 + 0.991831i \(0.540714\pi\)
\(570\) 22.4247 + 13.3874i 0.939268 + 0.560737i
\(571\) 9.98909 0.418031 0.209015 0.977912i \(-0.432974\pi\)
0.209015 + 0.977912i \(0.432974\pi\)
\(572\) 0 0
\(573\) 3.67982i 0.153727i
\(574\) 12.1492i 0.507097i
\(575\) −11.3765 + 6.13231i −0.474433 + 0.255735i
\(576\) −2.25511 −0.0939627
\(577\) −8.33921 −0.347166 −0.173583 0.984819i \(-0.555534\pi\)
−0.173583 + 0.984819i \(0.555534\pi\)
\(578\) −6.06508 −0.252274
\(579\) 36.1154i 1.50091i
\(580\) 9.78219 + 5.83991i 0.406183 + 0.242489i
\(581\) 13.9254 0.577723
\(582\) 14.3610i 0.595284i
\(583\) −5.16961 −0.214103
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 5.18051 0.214005
\(587\) −23.2442 −0.959391 −0.479695 0.877435i \(-0.659253\pi\)
−0.479695 + 0.877435i \(0.659253\pi\)
\(588\) 12.4356i 0.512836i
\(589\) −43.7397 −1.80226
\(590\) −5.83991 + 9.78219i −0.240425 + 0.402726i
\(591\) 2.31421i 0.0951940i
\(592\) 7.83991 0.322218
\(593\) −34.2646 −1.40708 −0.703540 0.710656i \(-0.748398\pi\)
−0.703540 + 0.710656i \(0.748398\pi\)
\(594\) 3.41520 0.140127
\(595\) 6.90905 11.5731i 0.283243 0.474449i
\(596\) 0 0
\(597\) 0.998609i 0.0408703i
\(598\) 0 0
\(599\) 31.1886 1.27433 0.637167 0.770726i \(-0.280106\pi\)
0.637167 + 0.770726i \(0.280106\pi\)
\(600\) −10.0896 + 5.43860i −0.411905 + 0.222030i
\(601\) −3.40429 −0.138864 −0.0694320 0.997587i \(-0.522119\pi\)
−0.0694320 + 0.997587i \(0.522119\pi\)
\(602\) 13.6520i 0.556415i
\(603\) 19.3596 0.788385
\(604\) 14.5570i 0.592317i
\(605\) −13.4397 8.02341i −0.546401 0.326198i
\(606\) 29.0204i 1.17887i
\(607\) 0.945827i 0.0383899i 0.999816 + 0.0191950i \(0.00611032\pi\)
−0.999816 + 0.0191950i \(0.993890\pi\)
\(608\) 5.09501i 0.206630i
\(609\) 14.6594i 0.594029i
\(610\) −26.2646 15.6798i −1.06342 0.634857i
\(611\) 0 0
\(612\) 10.8304i 0.437793i
\(613\) −40.7193 −1.64464 −0.822318 0.569028i \(-0.807319\pi\)
−0.822318 + 0.569028i \(0.807319\pi\)
\(614\) 0.320184 0.0129216
\(615\) −42.6038 25.4342i −1.71795 1.02561i
\(616\) 2.51021i 0.101139i
\(617\) 12.6594 0.509648 0.254824 0.966987i \(-0.417982\pi\)
0.254824 + 0.966987i \(0.417982\pi\)
\(618\) 17.4342 0.701307
\(619\) 5.03945i 0.202553i 0.994858 + 0.101276i \(0.0322926\pi\)
−0.994858 + 0.101276i \(0.967707\pi\)
\(620\) 9.83991 16.4824i 0.395180 0.661950i
\(621\) −4.41381 −0.177120
\(622\) 9.86984 0.395745
\(623\) 6.39478i 0.256201i
\(624\) 0 0
\(625\) −13.7430 + 20.8837i −0.549719 + 0.835349i
\(626\) 10.6126i 0.424164i
\(627\) 23.3596i 0.932894i
\(628\) 13.0950i 0.522548i
\(629\) 37.6520i 1.50128i
\(630\) 5.43423 + 3.24420i 0.216505 + 0.129252i
\(631\) 1.00736i 0.0401024i 0.999799 + 0.0200512i \(0.00638293\pi\)
−0.999799 + 0.0200512i \(0.993617\pi\)
\(632\) −15.0950 −0.600447
\(633\) 37.4810i 1.48974i
\(634\) −12.1900 −0.484128
\(635\) 1.62210 2.71711i 0.0643711 0.107825i
\(636\) 5.92541 0.234958
\(637\) 0 0
\(638\) 10.1900i 0.403427i
\(639\) 12.1492i 0.480614i
\(640\) −1.91995 1.14620i −0.0758928 0.0453076i
\(641\) 41.3596 1.63361 0.816804 0.576916i \(-0.195744\pi\)
0.816804 + 0.576916i \(0.195744\pi\)
\(642\) 10.5102 0.414805
\(643\) 3.26601 0.128799 0.0643994 0.997924i \(-0.479487\pi\)
0.0643994 + 0.997924i \(0.479487\pi\)
\(644\) 3.24420i 0.127839i
\(645\) 47.8739 + 28.5804i 1.88503 + 1.12535i
\(646\) −24.4694 −0.962734
\(647\) 19.4342i 0.764038i 0.924154 + 0.382019i \(0.124771\pi\)
−0.924154 + 0.382019i \(0.875229\pi\)
\(648\) −10.6798 −0.419543
\(649\) −10.1900 −0.399994
\(650\) 0 0
\(651\) −24.7002 −0.968079
\(652\) 12.2646 0.480320
\(653\) 4.51021i 0.176498i −0.996098 0.0882491i \(-0.971873\pi\)
0.996098 0.0882491i \(-0.0281271\pi\)
\(654\) 34.1045 1.33359
\(655\) −21.1378 12.6191i −0.825921 0.493070i
\(656\) 9.67982i 0.377933i
\(657\) 13.5306 0.527880
\(658\) 3.44513 0.134305
\(659\) −27.2104 −1.05997 −0.529984 0.848007i \(-0.677802\pi\)
−0.529984 + 0.848007i \(0.677802\pi\)
\(660\) −8.80261 5.25511i −0.342641 0.204555i
\(661\) 24.5292i 0.954077i 0.878882 + 0.477038i \(0.158290\pi\)
−0.878882 + 0.477038i \(0.841710\pi\)
\(662\) 17.9444i 0.697430i
\(663\) 0 0
\(664\) 11.0950 0.430570
\(665\) 7.32970 12.2777i 0.284234 0.476108i
\(666\) −17.6798 −0.685079
\(667\) 13.1696i 0.509929i
\(668\) 18.3392 0.709565
\(669\) 49.9385i 1.93073i
\(670\) 16.4824 + 9.83991i 0.636772 + 0.380149i
\(671\) 27.3596i 1.05621i
\(672\) 2.87720i 0.110991i
\(673\) 8.95180i 0.345066i 0.985004 + 0.172533i \(0.0551952\pi\)
−0.985004 + 0.172533i \(0.944805\pi\)
\(674\) 20.9518i 0.807033i
\(675\) −7.51566 + 4.05119i −0.289278 + 0.155930i
\(676\) 0 0
\(677\) 32.6256i 1.25391i 0.779057 + 0.626953i \(0.215698\pi\)
−0.779057 + 0.626953i \(0.784302\pi\)
\(678\) −9.16961 −0.352157
\(679\) 7.86276 0.301745
\(680\) 5.50476 9.22079i 0.211098 0.353601i
\(681\) 20.6784i 0.792399i
\(682\) 17.1696 0.657458
\(683\) −11.0950 −0.424539 −0.212269 0.977211i \(-0.568085\pi\)
−0.212269 + 0.977211i \(0.568085\pi\)
\(684\) 11.4898i 0.439323i
\(685\) 28.0022 + 16.7171i 1.06991 + 0.638728i
\(686\) −15.5943 −0.595394
\(687\) −10.7449 −0.409943
\(688\) 10.8772i 0.414690i
\(689\) 0 0
\(690\) 11.3765 + 6.79171i 0.433096 + 0.258556i
\(691\) 13.5306i 0.514729i −0.966314 0.257365i \(-0.917146\pi\)
0.966314 0.257365i \(-0.0828542\pi\)
\(692\) 9.41520i 0.357912i
\(693\) 5.66079i 0.215036i
\(694\) 3.51757i 0.133525i
\(695\) 14.0727 + 8.40131i 0.533807 + 0.318680i
\(696\) 11.6798i 0.442722i
\(697\) 46.4884 1.76087
\(698\) 17.8568i 0.675889i
\(699\) 31.0313 1.17371
\(700\) 2.97767 + 5.52410i 0.112545 + 0.208791i
\(701\) 48.1345 1.81801 0.909007 0.416781i \(-0.136842\pi\)
0.909007 + 0.416781i \(0.136842\pi\)
\(702\) 0 0
\(703\) 39.9444i 1.50653i
\(704\) 2.00000i 0.0753778i
\(705\) 7.21236 12.0811i 0.271633 0.455001i
\(706\) −36.9240 −1.38965
\(707\) 15.8889 0.597563
\(708\) 11.6798 0.438954
\(709\) 16.5292i 0.620769i 0.950611 + 0.310384i \(0.100458\pi\)
−0.950611 + 0.310384i \(0.899542\pi\)
\(710\) 6.17506 10.3436i 0.231746 0.388188i
\(711\) 34.0408 1.27663
\(712\) 5.09501i 0.190944i
\(713\) −22.1900 −0.831023
\(714\) −13.8181 −0.517129
\(715\) 0 0
\(716\) −7.32970 −0.273924
\(717\) 7.32970 0.273733
\(718\) 6.77483i 0.252834i
\(719\) −6.39478 −0.238485 −0.119242 0.992865i \(-0.538047\pi\)
−0.119242 + 0.992865i \(0.538047\pi\)
\(720\) 4.32970 + 2.58480i 0.161358 + 0.0963299i
\(721\) 9.54535i 0.355488i
\(722\) −6.95916 −0.258993
\(723\) 32.3582 1.20342
\(724\) −11.7544 −0.436849
\(725\) −12.0877 22.4247i −0.448924 0.832833i
\(726\) 16.0468i 0.595553i
\(727\) 35.0204i 1.29884i 0.760432 + 0.649418i \(0.224987\pi\)
−0.760432 + 0.649418i \(0.775013\pi\)
\(728\) 0 0
\(729\) 12.3406 0.457059
\(730\) 11.5197 + 6.87720i 0.426364 + 0.254537i
\(731\) −52.2390 −1.93213
\(732\) 31.3596i 1.15909i
\(733\) 22.6485 0.836541 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(734\) 7.80997i 0.288271i
\(735\) −14.2537 + 23.8758i −0.525756 + 0.880673i
\(736\) 2.58480i 0.0952771i
\(737\) 17.1696i 0.632451i
\(738\) 21.8290i 0.803537i
\(739\) 25.0394i 0.921091i 0.887636 + 0.460546i \(0.152346\pi\)
−0.887636 + 0.460546i \(0.847654\pi\)
\(740\) −15.0523 8.98611i −0.553332 0.330336i
\(741\) 0 0
\(742\) 3.24420i 0.119098i
\(743\) 35.8252 1.31430 0.657149 0.753760i \(-0.271762\pi\)
0.657149 + 0.753760i \(0.271762\pi\)
\(744\) −19.6798 −0.721497
\(745\) 0 0
\(746\) 15.8698i 0.581036i
\(747\) −25.0204 −0.915449
\(748\) 9.60522 0.351202
\(749\) 5.75441i 0.210262i
\(750\) 25.6052 + 1.12280i 0.934971 + 0.0409987i
\(751\) −41.6988 −1.52161 −0.760806 0.648979i \(-0.775196\pi\)
−0.760806 + 0.648979i \(0.775196\pi\)
\(752\) 2.74489 0.100096
\(753\) 48.5292i 1.76850i
\(754\) 0 0
\(755\) 16.6853 27.9488i 0.607239 1.01716i
\(756\) 2.14322i 0.0779480i
\(757\) 11.6052i 0.421799i −0.977508 0.210900i \(-0.932361\pi\)
0.977508 0.210900i \(-0.0676393\pi\)
\(758\) 16.7748i 0.609289i
\(759\) 11.8508i 0.430157i
\(760\) 5.83991 9.78219i 0.211836 0.354837i
\(761\) 30.2646i 1.09709i −0.836121 0.548546i \(-0.815182\pi\)
0.836121 0.548546i \(-0.184818\pi\)
\(762\) −3.24420 −0.117525
\(763\) 18.6725i 0.675988i
\(764\) −1.60522 −0.0580749
\(765\) −12.4138 + 20.7939i −0.448822 + 0.751804i
\(766\) −16.6147 −0.600315
\(767\) 0 0
\(768\) 2.29240i 0.0827199i
\(769\) 24.6594i 0.889241i −0.895719 0.444620i \(-0.853339\pi\)
0.895719 0.444620i \(-0.146661\pi\)
\(770\) −2.87720 + 4.81949i −0.103687 + 0.173682i
\(771\) −18.8385 −0.678453
\(772\) −15.7544 −0.567014
\(773\) 30.3501 1.09162 0.545809 0.837910i \(-0.316222\pi\)
0.545809 + 0.837910i \(0.316222\pi\)
\(774\) 24.5292i 0.881685i
\(775\) −37.7843 + 20.3670i −1.35725 + 0.731604i
\(776\) 6.26462 0.224887
\(777\) 22.5570i 0.809229i
\(778\) 36.7193 1.31645
\(779\) 49.3188 1.76703
\(780\) 0 0
\(781\) 10.7748 0.385554
\(782\) −12.4138 −0.443917
\(783\) 8.70024i 0.310921i
\(784\) −5.42471 −0.193740
\(785\) −15.0095 + 25.1418i −0.535713 + 0.897350i
\(786\) 25.2382i 0.900218i
\(787\) 11.1288 0.396698 0.198349 0.980131i \(-0.436442\pi\)
0.198349 + 0.980131i \(0.436442\pi\)
\(788\) −1.00951 −0.0359625
\(789\) 10.3392 0.368086
\(790\) 28.9817 + 17.3019i 1.03112 + 0.615575i
\(791\) 5.02042i 0.178506i
\(792\) 4.51021i 0.160263i
\(793\) 0 0
\(794\) 29.2104 1.03664
\(795\) −11.3765 6.79171i −0.403483 0.240877i
\(796\) 0.435617 0.0154400
\(797\) 46.7939i 1.65752i −0.559602 0.828762i \(-0.689046\pi\)
0.559602 0.828762i \(-0.310954\pi\)
\(798\) −14.6594 −0.518937
\(799\) 13.1827i 0.466369i
\(800\) 2.37245 + 4.40131i 0.0838787 + 0.155610i
\(801\) 11.4898i 0.405972i
\(802\) 15.6052i 0.551040i
\(803\) 12.0000i 0.423471i
\(804\) 19.6798i 0.694054i
\(805\) 3.71850 6.22871i 0.131060 0.219533i
\(806\) 0 0
\(807\) 19.5088i 0.686743i
\(808\) 12.6594 0.445356
\(809\) −50.4437 −1.77351 −0.886754 0.462242i \(-0.847045\pi\)
−0.886754 + 0.462242i \(0.847045\pi\)
\(810\) 20.5048 + 12.2412i 0.720464 + 0.430112i
\(811\) 36.3991i 1.27814i −0.769147 0.639072i \(-0.779318\pi\)
0.769147 0.639072i \(-0.220682\pi\)
\(812\) −6.39478 −0.224413
\(813\) 11.3515 0.398115
\(814\) 15.6798i 0.549577i
\(815\) −23.5475 14.0577i −0.824833 0.492420i
\(816\) −11.0095 −0.385410
\(817\) −55.4195 −1.93888
\(818\) 13.7952i 0.482340i
\(819\) 0 0
\(820\) −11.0950 + 18.5848i −0.387455 + 0.649009i
\(821\) 6.23684i 0.217667i −0.994060 0.108834i \(-0.965288\pi\)
0.994060 0.108834i \(-0.0347116\pi\)
\(822\) 33.4342i 1.16615i
\(823\) 33.7734i 1.17727i 0.808400 + 0.588634i \(0.200334\pi\)
−0.808400 + 0.588634i \(0.799666\pi\)
\(824\) 7.60522i 0.264941i
\(825\) 10.8772 + 20.1791i 0.378696 + 0.702547i
\(826\) 6.39478i 0.222503i
\(827\) 37.2295 1.29460 0.647298 0.762237i \(-0.275899\pi\)
0.647298 + 0.762237i \(0.275899\pi\)
\(828\) 5.82900i 0.202572i
\(829\) −38.2646 −1.32899 −0.664493 0.747295i \(-0.731352\pi\)
−0.664493 + 0.747295i \(0.731352\pi\)
\(830\) −21.3019 12.7171i −0.739400 0.441417i
\(831\) −45.5497 −1.58010
\(832\) 0 0
\(833\) 26.0528i 0.902675i
\(834\) 16.8026i 0.581827i
\(835\) −35.2104 21.0204i −1.21851 0.727442i
\(836\) 10.1900 0.352429
\(837\) −14.6594 −0.506703
\(838\) 30.6893 1.06015
\(839\) 50.1345i 1.73083i 0.501052 + 0.865417i \(0.332946\pi\)
−0.501052 + 0.865417i \(0.667054\pi\)
\(840\) 3.29785 5.52410i 0.113787 0.190600i
\(841\) −3.04084 −0.104857
\(842\) 16.9180i 0.583034i
\(843\) 69.3787 2.38953
\(844\) 16.3501 0.562794
\(845\) 0 0
\(846\) −6.19003 −0.212817
\(847\) 8.78574 0.301881
\(848\) 2.58480i 0.0887625i
\(849\) 61.7207 2.11825
\(850\) −21.1378 + 11.3939i −0.725019 + 0.390809i
\(851\) 20.2646i 0.694662i
\(852\) −12.3501 −0.423108
\(853\) 12.3910 0.424258 0.212129 0.977242i \(-0.431960\pi\)
0.212129 + 0.977242i \(0.431960\pi\)
\(854\) 17.1696 0.587532
\(855\) −13.1696 + 22.0599i −0.450391 + 0.754432i
\(856\) 4.58480i 0.156705i
\(857\) 25.4005i 0.867664i 0.900994 + 0.433832i \(0.142839\pi\)
−0.900994 + 0.433832i \(0.857161\pi\)
\(858\) 0 0
\(859\) 50.1900 1.71246 0.856231 0.516593i \(-0.172800\pi\)
0.856231 + 0.516593i \(0.172800\pi\)
\(860\) 12.4675 20.8837i 0.425137 0.712129i
\(861\) 27.8508 0.949153
\(862\) 17.9722i 0.612136i
\(863\) −43.4451 −1.47889 −0.739445 0.673217i \(-0.764912\pi\)
−0.739445 + 0.673217i \(0.764912\pi\)
\(864\) 1.70760i 0.0580937i
\(865\) 10.7917 18.0767i 0.366929 0.614628i
\(866\) 2.61259i 0.0887793i
\(867\) 13.9036i 0.472191i
\(868\) 10.7748i 0.365722i
\(869\) 30.1900i 1.02413i
\(870\) −13.3874 + 22.4247i −0.453876 + 0.760269i
\(871\) 0 0
\(872\) 14.8772i 0.503806i
\(873\) −14.1274 −0.478139
\(874\) −13.1696 −0.445469
\(875\) 0.614738 14.0190i 0.0207819 0.473930i
\(876\) 13.7544i 0.464718i
\(877\) 11.6689 0.394031 0.197016 0.980400i \(-0.436875\pi\)
0.197016 + 0.980400i \(0.436875\pi\)
\(878\) 14.6594 0.494731
\(879\) 11.8758i 0.400561i
\(880\) −2.29240 + 3.83991i −0.0772768 + 0.129443i
\(881\) 0.0446585 0.00150458 0.000752291 1.00000i \(-0.499761\pi\)
0.000752291 1.00000i \(0.499761\pi\)
\(882\) 12.2333 0.411916
\(883\) 24.4269i 0.822029i 0.911629 + 0.411015i \(0.134826\pi\)
−0.911629 + 0.411015i \(0.865174\pi\)
\(884\) 0 0
\(885\) −22.4247 13.3874i −0.753798 0.450013i
\(886\) 8.33324i 0.279961i
\(887\) 47.2295i 1.58581i 0.609345 + 0.792905i \(0.291433\pi\)
−0.609345 + 0.792905i \(0.708567\pi\)
\(888\) 17.9722i 0.603108i
\(889\) 1.77622i 0.0595725i
\(890\) 5.83991 9.78219i 0.195754 0.327900i
\(891\) 21.3596i 0.715575i
\(892\) 21.7843 0.729394
\(893\) 13.9853i 0.467999i
\(894\) 0 0
\(895\) 14.0727 + 8.40131i 0.470398 + 0.280825i
\(896\) 1.25511 0.0419301
\(897\) 0 0
\(898\) 4.04084i 0.134845i
\(899\) 43.7397i 1.45880i
\(900\) −5.35012 9.92541i −0.178337 0.330847i
\(901\) 12.4138 0.413564
\(902\) −19.3596 −0.644605
\(903\) −31.2959 −1.04146
\(904\) 4.00000i 0.133038i
\(905\) 22.5679 + 13.4729i 0.750183 + 0.447855i
\(906\) −33.3705 −1.10866
\(907\) 44.7133i 1.48468i −0.670023 0.742340i \(-0.733716\pi\)
0.670023 0.742340i \(-0.266284\pi\)
\(908\) −9.02042 −0.299353
\(909\) −28.5483 −0.946886
\(910\) 0 0
\(911\) 51.9444 1.72100 0.860498 0.509454i \(-0.170153\pi\)
0.860498 + 0.509454i \(0.170153\pi\)
\(912\) −11.6798 −0.386757
\(913\) 22.1900i 0.734383i
\(914\) 0.979580 0.0324016
\(915\) 35.9444 60.2091i 1.18829 1.99045i
\(916\) 4.68718i 0.154869i
\(917\) 13.8181 0.456314
\(918\) −8.20093 −0.270671
\(919\) 13.5497 0.446962 0.223481 0.974708i \(-0.428258\pi\)
0.223481 + 0.974708i \(0.428258\pi\)
\(920\) 2.96270 4.96270i 0.0976774 0.163615i
\(921\) 0.733989i 0.0241858i
\(922\) 10.7280i 0.353308i
\(923\) 0 0
\(924\) 5.75441 0.189306
\(925\) 18.5998 + 34.5058i 0.611557 + 1.13454i
\(926\) −23.2104 −0.762743
\(927\) 17.1506i 0.563299i
\(928\) −5.09501 −0.167252
\(929\) 44.1682i 1.44911i 0.689216 + 0.724556i \(0.257955\pi\)
−0.689216 + 0.724556i \(0.742045\pi\)
\(930\) 37.7843 + 22.5570i 1.23900 + 0.739674i
\(931\) 27.6390i 0.905831i
\(932\) 13.5366i 0.443406i
\(933\) 22.6256i 0.740730i
\(934\) 28.5848i 0.935323i
\(935\) −18.4416 11.0095i −0.603104 0.360050i
\(936\) 0 0
\(937\) 41.6988i 1.36224i 0.732171 + 0.681121i \(0.238507\pi\)
−0.732171 + 0.681121i \(0.761493\pi\)
\(938\) −10.7748 −0.351811
\(939\) −24.3283 −0.793924
\(940\) −5.27007 3.14620i −0.171891 0.102618i
\(941\) 37.4473i 1.22075i 0.792114 + 0.610373i \(0.208981\pi\)
−0.792114 + 0.610373i \(0.791019\pi\)
\(942\) 30.0190 0.978073
\(943\) 25.0204 0.814777
\(944\) 5.09501i 0.165829i
\(945\) 2.45656 4.11488i 0.0799117 0.133857i
\(946\) 21.7544 0.707297
\(947\) 11.5644 0.375792 0.187896 0.982189i \(-0.439833\pi\)
0.187896 + 0.982189i \(0.439833\pi\)
\(948\) 34.6038i 1.12388i
\(949\) 0 0
\(950\) −22.4247 + 12.0877i −0.727554 + 0.392175i
\(951\) 27.9444i 0.906160i
\(952\) 6.02778i 0.195362i
\(953\) 53.4810i 1.73242i −0.499680 0.866210i \(-0.666549\pi\)
0.499680 0.866210i \(-0.333451\pi\)
\(954\) 5.82900i 0.188721i
\(955\) 3.08196 + 1.83991i 0.0997297 + 0.0595380i
\(956\) 3.19739i 0.103411i
\(957\) −23.3596 −0.755110
\(958\) 30.4078i 0.982433i
\(959\) −18.3055 −0.591114
\(960\) 2.62755 4.40131i 0.0848039 0.142052i
\(961\) −42.6988 −1.37738
\(962\) 0 0
\(963\) 10.3392i 0.333176i
\(964\) 14.1154i 0.454627i
\(965\) 30.2477 + 18.0577i 0.973709 + 0.581298i
\(966\) −7.43701 −0.239282
\(967\) 34.8941 1.12212 0.561059 0.827776i \(-0.310394\pi\)
0.561059 + 0.827776i \(0.310394\pi\)
\(968\) 7.00000 0.224989
\(969\) 56.0936i 1.80199i
\(970\) −12.0278 7.18051i −0.386189 0.230552i
\(971\) 31.8807 1.02310 0.511551 0.859253i \(-0.329071\pi\)
0.511551 + 0.859253i \(0.329071\pi\)
\(972\) 19.3596i 0.620961i
\(973\) −9.19954 −0.294924
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 13.6798 0.437880
\(977\) 2.03375 0.0650655 0.0325328 0.999471i \(-0.489643\pi\)
0.0325328 + 0.999471i \(0.489643\pi\)
\(978\) 28.1154i 0.899032i
\(979\) 10.1900 0.325675
\(980\) 10.4152 + 6.21781i 0.332701 + 0.198621i
\(981\) 33.5497i 1.07116i
\(982\) −22.6893 −0.724046
\(983\) 29.4043 0.937851 0.468926 0.883238i \(-0.344641\pi\)
0.468926 + 0.883238i \(0.344641\pi\)
\(984\) 22.1900 0.707392
\(985\) 1.93822 + 1.15711i 0.0617569 + 0.0368685i
\(986\) 24.4694i 0.779263i
\(987\) 7.89762i 0.251384i
\(988\) 0 0
\(989\) −28.1154 −0.894019
\(990\) 5.16961 8.65940i 0.164301 0.275214i
\(991\) 32.9986 1.04824 0.524118 0.851646i \(-0.324395\pi\)
0.524118 + 0.851646i \(0.324395\pi\)
\(992\) 8.58480i 0.272568i
\(993\) 41.1359 1.30541
\(994\) 6.76177i 0.214470i
\(995\) −0.836365 0.499304i −0.0265145 0.0158290i
\(996\) 25.4342i 0.805914i
\(997\) 31.1696i 0.987151i −0.869703 0.493576i \(-0.835690\pi\)
0.869703 0.493576i \(-0.164310\pi\)
\(998\) 31.8698i 1.00882i
\(999\) 13.3874i 0.423559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.d.1689.5 6
5.4 even 2 1690.2.c.a.1689.2 6
13.5 odd 4 130.2.b.a.79.3 6
13.8 odd 4 1690.2.b.a.339.6 6
13.12 even 2 1690.2.c.a.1689.5 6
39.5 even 4 1170.2.e.f.469.6 6
52.31 even 4 1040.2.d.b.209.2 6
65.8 even 4 8450.2.a.cc.1.1 3
65.18 even 4 650.2.a.n.1.1 3
65.34 odd 4 1690.2.b.a.339.1 6
65.44 odd 4 130.2.b.a.79.4 yes 6
65.47 even 4 8450.2.a.bs.1.3 3
65.57 even 4 650.2.a.o.1.3 3
65.64 even 2 inner 1690.2.c.d.1689.2 6
195.44 even 4 1170.2.e.f.469.3 6
195.83 odd 4 5850.2.a.cs.1.2 3
195.122 odd 4 5850.2.a.cp.1.2 3
260.83 odd 4 5200.2.a.ce.1.3 3
260.187 odd 4 5200.2.a.cf.1.1 3
260.239 even 4 1040.2.d.b.209.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.3 6 13.5 odd 4
130.2.b.a.79.4 yes 6 65.44 odd 4
650.2.a.n.1.1 3 65.18 even 4
650.2.a.o.1.3 3 65.57 even 4
1040.2.d.b.209.2 6 52.31 even 4
1040.2.d.b.209.5 6 260.239 even 4
1170.2.e.f.469.3 6 195.44 even 4
1170.2.e.f.469.6 6 39.5 even 4
1690.2.b.a.339.1 6 65.34 odd 4
1690.2.b.a.339.6 6 13.8 odd 4
1690.2.c.a.1689.2 6 5.4 even 2
1690.2.c.a.1689.5 6 13.12 even 2
1690.2.c.d.1689.2 6 65.64 even 2 inner
1690.2.c.d.1689.5 6 1.1 even 1 trivial
5200.2.a.ce.1.3 3 260.83 odd 4
5200.2.a.cf.1.1 3 260.187 odd 4
5850.2.a.cp.1.2 3 195.122 odd 4
5850.2.a.cs.1.2 3 195.83 odd 4
8450.2.a.bs.1.3 3 65.47 even 4
8450.2.a.cc.1.1 3 65.8 even 4