L(s) = 1 | + (0.707 − 0.707i)3-s + (1.75 − 1.38i)5-s + (−2.02 + 1.69i)7-s − 1.00i·9-s − 2.43·11-s + (1.08 − 1.08i)13-s + (0.265 − 2.22i)15-s + (−1.74 − 1.74i)17-s + 6.07·19-s + (−0.234 + 2.63i)21-s + (1.45 + 1.45i)23-s + (1.17 − 4.85i)25-s + (−0.707 − 0.707i)27-s − 5.62i·29-s − 6.36i·31-s + ⋯ |
L(s) = 1 | + (0.408 − 0.408i)3-s + (0.786 − 0.618i)5-s + (−0.766 + 0.641i)7-s − 0.333i·9-s − 0.732·11-s + (0.300 − 0.300i)13-s + (0.0685 − 0.573i)15-s + (−0.422 − 0.422i)17-s + 1.39·19-s + (−0.0511 + 0.575i)21-s + (0.303 + 0.303i)23-s + (0.235 − 0.971i)25-s + (−0.136 − 0.136i)27-s − 1.04i·29-s − 1.14i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0240 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0240 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.870088363\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.870088363\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (-1.75 + 1.38i)T \) |
| 7 | \( 1 + (2.02 - 1.69i)T \) |
good | 11 | \( 1 + 2.43T + 11T^{2} \) |
| 13 | \( 1 + (-1.08 + 1.08i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.74 + 1.74i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.07T + 19T^{2} \) |
| 23 | \( 1 + (-1.45 - 1.45i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.62iT - 29T^{2} \) |
| 31 | \( 1 + 6.36iT - 31T^{2} \) |
| 37 | \( 1 + (-6.09 + 6.09i)T - 37iT^{2} \) |
| 41 | \( 1 + 7.22iT - 41T^{2} \) |
| 43 | \( 1 + (6.91 + 6.91i)T + 43iT^{2} \) |
| 47 | \( 1 + (1.47 + 1.47i)T + 47iT^{2} \) |
| 53 | \( 1 + (-6.45 - 6.45i)T + 53iT^{2} \) |
| 59 | \( 1 - 3.00T + 59T^{2} \) |
| 61 | \( 1 - 9.57iT - 61T^{2} \) |
| 67 | \( 1 + (-4.18 + 4.18i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.97T + 71T^{2} \) |
| 73 | \( 1 + (0.625 - 0.625i)T - 73iT^{2} \) |
| 79 | \( 1 + 0.692iT - 79T^{2} \) |
| 83 | \( 1 + (12.1 - 12.1i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.14T + 89T^{2} \) |
| 97 | \( 1 + (-9.98 - 9.98i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.259011549467089761350502292657, −8.456409440945717567071463878953, −7.62523192625837593736840564415, −6.76695628291108775065613029158, −5.67641436127385903175492579253, −5.44771726494578788428211866407, −4.03936616023053413565857522538, −2.84152134657133525249306468463, −2.17896651123213743025216040258, −0.68496656362758011734969641664,
1.45793420826083313310772571014, 2.91151704832362531181856277864, 3.29766474819217243008417609320, 4.58588807821909737997312359087, 5.45437923154840499549636018486, 6.49162494348440639725503330847, 7.01332809094736268604762505473, 7.992017653219504980633179988296, 8.885310320306110770927909926089, 9.807094383340841489867470795555