# Properties

 Modulus 1680 Conductor 35 Order 4 Real no Primitive no Minimal no Parity even Orbit label 1680.cz

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1680)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,0,3,2]))

pari: [g,chi] = znchar(Mod(433,1680))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 1680 Conductor = 35 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 4 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = no sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 1680.cz Orbit index = 78

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1471,421,1121,337,241)$$ → $$(1,1,1,-i,-1)$$

## Values

 -1 1 11 13 17 19 23 29 31 37 41 43 $$1$$ $$1$$ $$1$$ $$-i$$ $$i$$ $$1$$ $$i$$ $$-1$$ $$-1$$ $$-i$$ $$-1$$ $$i$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(i)$$