L(s) = 1 | + (−0.707 + 0.707i)3-s + (−1.43 + 1.71i)5-s + (2.23 + 1.41i)7-s − 1.00i·9-s − 0.566·11-s + (5.03 − 5.03i)13-s + (−0.194 − 2.22i)15-s + (−0.984 − 0.984i)17-s + 7.61·19-s + (−2.58 + 0.581i)21-s + (−2.55 − 2.55i)23-s + (−0.865 − 4.92i)25-s + (0.707 + 0.707i)27-s − 7.85i·29-s + 7.09i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.642 + 0.765i)5-s + (0.845 + 0.534i)7-s − 0.333i·9-s − 0.170·11-s + (1.39 − 1.39i)13-s + (−0.0501 − 0.575i)15-s + (−0.238 − 0.238i)17-s + 1.74·19-s + (−0.563 + 0.126i)21-s + (−0.531 − 0.531i)23-s + (−0.173 − 0.984i)25-s + (0.136 + 0.136i)27-s − 1.45i·29-s + 1.27i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.857 - 0.514i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.857 - 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.561637336\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.561637336\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.43 - 1.71i)T \) |
| 7 | \( 1 + (-2.23 - 1.41i)T \) |
good | 11 | \( 1 + 0.566T + 11T^{2} \) |
| 13 | \( 1 + (-5.03 + 5.03i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.984 + 0.984i)T + 17iT^{2} \) |
| 19 | \( 1 - 7.61T + 19T^{2} \) |
| 23 | \( 1 + (2.55 + 2.55i)T + 23iT^{2} \) |
| 29 | \( 1 + 7.85iT - 29T^{2} \) |
| 31 | \( 1 - 7.09iT - 31T^{2} \) |
| 37 | \( 1 + (-0.887 + 0.887i)T - 37iT^{2} \) |
| 41 | \( 1 + 6.29iT - 41T^{2} \) |
| 43 | \( 1 + (-2.74 - 2.74i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.25 - 3.25i)T + 47iT^{2} \) |
| 53 | \( 1 + (-7.27 - 7.27i)T + 53iT^{2} \) |
| 59 | \( 1 - 6.62T + 59T^{2} \) |
| 61 | \( 1 + 5.46iT - 61T^{2} \) |
| 67 | \( 1 + (-2.53 + 2.53i)T - 67iT^{2} \) |
| 71 | \( 1 + 8.01T + 71T^{2} \) |
| 73 | \( 1 + (8.97 - 8.97i)T - 73iT^{2} \) |
| 79 | \( 1 - 1.85iT - 79T^{2} \) |
| 83 | \( 1 + (2.61 - 2.61i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.2T + 89T^{2} \) |
| 97 | \( 1 + (-4.32 - 4.32i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.462308637156942278793367509629, −8.457259525564288202917765644978, −7.927594236383676111330243712186, −7.11708964261657346673725213416, −5.94874547450182259435190843803, −5.49588861902981039973001105773, −4.40083600693371842622711134510, −3.48116317121042809247880849937, −2.61370310430780930075062882099, −0.899941465588113172856184528506,
0.989052049621424967270695646541, 1.75356562606334450484790048270, 3.57797540418667636248775386276, 4.29344444087668630413004433091, 5.16240853246793418462946420486, 5.97264024046127814871399113524, 7.11278908095069902022581265297, 7.60451582899748041666606605811, 8.495934726386634785529547332654, 9.049275680081704188355804466043