L(s) = 1 | + (−0.707 + 0.707i)3-s + (−1.19 − 1.88i)5-s + (2.59 + 0.510i)7-s − 1.00i·9-s − 4.79·11-s + (−0.585 + 0.585i)13-s + (2.18 + 0.489i)15-s + (4.10 + 4.10i)17-s − 2.36·19-s + (−2.19 + 1.47i)21-s + (−2.97 − 2.97i)23-s + (−2.13 + 4.52i)25-s + (0.707 + 0.707i)27-s − 9.94i·29-s + 3.02i·31-s + ⋯ |
L(s) = 1 | + (−0.408 + 0.408i)3-s + (−0.535 − 0.844i)5-s + (0.981 + 0.192i)7-s − 0.333i·9-s − 1.44·11-s + (−0.162 + 0.162i)13-s + (0.563 + 0.126i)15-s + (0.995 + 0.995i)17-s − 0.542·19-s + (−0.479 + 0.321i)21-s + (−0.621 − 0.621i)23-s + (−0.427 + 0.904i)25-s + (0.136 + 0.136i)27-s − 1.84i·29-s + 0.542i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 - 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.566 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6045772316\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6045772316\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.19 + 1.88i)T \) |
| 7 | \( 1 + (-2.59 - 0.510i)T \) |
good | 11 | \( 1 + 4.79T + 11T^{2} \) |
| 13 | \( 1 + (0.585 - 0.585i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.10 - 4.10i)T + 17iT^{2} \) |
| 19 | \( 1 + 2.36T + 19T^{2} \) |
| 23 | \( 1 + (2.97 + 2.97i)T + 23iT^{2} \) |
| 29 | \( 1 + 9.94iT - 29T^{2} \) |
| 31 | \( 1 - 3.02iT - 31T^{2} \) |
| 37 | \( 1 + (6.10 - 6.10i)T - 37iT^{2} \) |
| 41 | \( 1 - 10.9iT - 41T^{2} \) |
| 43 | \( 1 + (-5.74 - 5.74i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.363 - 0.363i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.36 - 2.36i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.07T + 59T^{2} \) |
| 61 | \( 1 - 5.55iT - 61T^{2} \) |
| 67 | \( 1 + (-0.979 + 0.979i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.25T + 71T^{2} \) |
| 73 | \( 1 + (6.11 - 6.11i)T - 73iT^{2} \) |
| 79 | \( 1 - 5.10iT - 79T^{2} \) |
| 83 | \( 1 + (3.22 - 3.22i)T - 83iT^{2} \) |
| 89 | \( 1 + 11.8T + 89T^{2} \) |
| 97 | \( 1 + (8.05 + 8.05i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.789949851926847839564162223802, −8.550273950978958668011192028765, −8.157097763607451937586650963800, −7.56405259985566705267896464424, −6.13916517750472802522270527349, −5.43208641061236381629251105442, −4.66121029352083023790031145487, −4.07993214234008173395743172171, −2.66935343945688264052363546363, −1.32673205022033832266734675956,
0.24956037898509668044881231487, 1.92590521224968597106288514904, 2.92925138558121036575306605209, 4.01528857812071394433852880176, 5.23696559052976933306929994677, 5.57809167006699170695950100209, 7.00562501779377451367148800273, 7.45983705476908691763044023051, 7.971130983126011037009242405478, 8.933623876867325448614321388235