L(s) = 1 | + (−2.60 + 1.09i)2-s + (−4.05 + 3.24i)3-s + (5.61 − 5.69i)4-s + 13.2i·5-s + (7.03 − 12.9i)6-s + (18.4 − 1.29i)7-s + (−8.43 + 20.9i)8-s + (5.90 − 26.3i)9-s + (−14.4 − 34.5i)10-s + 49.5·11-s + (−4.28 + 41.3i)12-s + 28.7·13-s + (−46.7 + 23.5i)14-s + (−42.9 − 53.7i)15-s + (−0.896 − 63.9i)16-s + 69.2·17-s + ⋯ |
L(s) = 1 | + (−0.922 + 0.385i)2-s + (−0.780 + 0.624i)3-s + (0.702 − 0.712i)4-s + 1.18i·5-s + (0.478 − 0.877i)6-s + (0.997 − 0.0700i)7-s + (−0.372 + 0.927i)8-s + (0.218 − 0.975i)9-s + (−0.457 − 1.09i)10-s + 1.35·11-s + (−0.103 + 0.994i)12-s + 0.614·13-s + (−0.893 + 0.449i)14-s + (−0.740 − 0.924i)15-s + (−0.0140 − 0.999i)16-s + 0.988·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.355 - 0.934i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.355 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.583583 + 0.845941i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.583583 + 0.845941i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.60 - 1.09i)T \) |
| 3 | \( 1 + (4.05 - 3.24i)T \) |
| 7 | \( 1 + (-18.4 + 1.29i)T \) |
good | 5 | \( 1 - 13.2iT - 125T^{2} \) |
| 11 | \( 1 - 49.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 28.7T + 2.19e3T^{2} \) |
| 17 | \( 1 - 69.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 24.7T + 6.85e3T^{2} \) |
| 23 | \( 1 - 85.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 111.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 236. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 261. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 471.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 261. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 217.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 11.8T + 1.48e5T^{2} \) |
| 59 | \( 1 + 236. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 754.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 163. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 478. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.03e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 148.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 739. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.34e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 183. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01291962389221559991637932608, −11.27352040628929984028935794402, −10.69115379161319233249354274140, −9.738014973628191566205384400753, −8.655548751165063261385860650113, −7.27769073924580665989799122149, −6.43959548502303665700114921253, −5.35496365185185903319722438005, −3.61558995185430717420728871616, −1.38219504785918367863315342011,
0.861753852491891189640667322557, 1.71663710584112617238141139548, 4.20487184871792861101511590661, 5.63879739417201672819358268566, 6.90950624940498501035771457953, 8.155039869971860470892290334533, 8.753268606889769184451395966575, 10.04594216308009984308820158804, 11.28290840232035594384502462218, 11.85807657224850211785372822178