Properties

Label 168.4.i.c.125.11
Level $168$
Weight $4$
Character 168.125
Analytic conductor $9.912$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [168,4,Mod(125,168)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(168, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("168.125"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 168.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.91232088096\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 125.11
Character \(\chi\) \(=\) 168.125
Dual form 168.4.i.c.125.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.60932 + 1.09154i) q^{2} +(-4.05635 + 3.24747i) q^{3} +(5.61708 - 5.69635i) q^{4} +13.2397i q^{5} +(7.03955 - 12.9013i) q^{6} +(18.4748 - 1.29729i) q^{7} +(-8.43895 + 20.9949i) q^{8} +(5.90788 - 26.3457i) q^{9} +(-14.4516 - 34.5465i) q^{10} +49.5250 q^{11} +(-4.28610 + 41.3477i) q^{12} +28.7924 q^{13} +(-46.7905 + 23.5510i) q^{14} +(-42.9954 - 53.7046i) q^{15} +(-0.896814 - 63.9937i) q^{16} +69.2560 q^{17} +(13.3419 + 75.1930i) q^{18} -24.7890 q^{19} +(75.4177 + 74.3682i) q^{20} +(-70.7271 + 65.2585i) q^{21} +(-129.227 + 54.0585i) q^{22} +85.5006i q^{23} +(-33.9488 - 112.568i) q^{24} -50.2885 q^{25} +(-75.1286 + 31.4281i) q^{26} +(61.5925 + 126.053i) q^{27} +(96.3845 - 112.526i) q^{28} -111.594 q^{29} +(170.809 + 93.2013i) q^{30} +236.812i q^{31} +(72.1918 + 166.001i) q^{32} +(-200.891 + 160.831i) q^{33} +(-180.711 + 75.5957i) q^{34} +(17.1756 + 244.600i) q^{35} +(-116.889 - 181.639i) q^{36} -261.434i q^{37} +(64.6825 - 27.0582i) q^{38} +(-116.792 + 93.5026i) q^{39} +(-277.965 - 111.729i) q^{40} -471.089 q^{41} +(113.317 - 247.482i) q^{42} +261.133i q^{43} +(278.186 - 282.112i) q^{44} +(348.808 + 78.2183i) q^{45} +(-93.3274 - 223.098i) q^{46} +217.418 q^{47} +(211.455 + 256.668i) q^{48} +(339.634 - 47.9342i) q^{49} +(131.219 - 54.8919i) q^{50} +(-280.926 + 224.907i) q^{51} +(161.729 - 164.012i) q^{52} -11.8711 q^{53} +(-298.306 - 261.682i) q^{54} +655.694i q^{55} +(-128.671 + 398.823i) q^{56} +(100.553 - 80.5016i) q^{57} +(291.184 - 121.809i) q^{58} -236.528i q^{59} +(-547.429 - 56.7464i) q^{60} +754.519 q^{61} +(-258.490 - 617.917i) q^{62} +(74.9688 - 494.395i) q^{63} +(-369.568 - 354.349i) q^{64} +381.202i q^{65} +(348.634 - 638.939i) q^{66} -163.127i q^{67} +(389.016 - 394.506i) q^{68} +(-277.661 - 346.820i) q^{69} +(-311.807 - 619.490i) q^{70} +478.338i q^{71} +(503.268 + 346.365i) q^{72} -1038.37i q^{73} +(285.366 + 682.164i) q^{74} +(203.988 - 163.310i) q^{75} +(-139.242 + 141.207i) q^{76} +(914.963 - 64.2482i) q^{77} +(202.686 - 371.461i) q^{78} -148.084 q^{79} +(847.255 - 11.8735i) q^{80} +(-659.194 - 311.295i) q^{81} +(1229.22 - 514.213i) q^{82} +739.797i q^{83} +(-25.5448 + 769.449i) q^{84} +916.925i q^{85} +(-285.037 - 681.378i) q^{86} +(452.664 - 362.398i) q^{87} +(-417.939 + 1039.77i) q^{88} -1347.82 q^{89} +(-995.530 + 176.642i) q^{90} +(531.934 - 37.3521i) q^{91} +(487.042 + 480.264i) q^{92} +(-769.039 - 960.590i) q^{93} +(-567.311 + 237.320i) q^{94} -328.198i q^{95} +(-831.918 - 438.917i) q^{96} +183.115i q^{97} +(-833.891 + 495.800i) q^{98} +(292.588 - 1304.77i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 28 q^{4} + 64 q^{7} + 104 q^{9} - 8 q^{15} - 892 q^{16} + 692 q^{18} + 128 q^{22} - 976 q^{25} + 612 q^{28} - 332 q^{30} + 1544 q^{36} + 568 q^{39} + 780 q^{42} + 208 q^{46} - 4048 q^{49} - 1448 q^{57}+ \cdots - 2072 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.60932 + 1.09154i −0.922533 + 0.385918i
\(3\) −4.05635 + 3.24747i −0.780644 + 0.624976i
\(4\) 5.61708 5.69635i 0.702135 0.712044i
\(5\) 13.2397i 1.18419i 0.805868 + 0.592095i \(0.201699\pi\)
−0.805868 + 0.592095i \(0.798301\pi\)
\(6\) 7.03955 12.9013i 0.478981 0.877825i
\(7\) 18.4748 1.29729i 0.997544 0.0700470i
\(8\) −8.43895 + 20.9949i −0.372953 + 0.927850i
\(9\) 5.90788 26.3457i 0.218810 0.975767i
\(10\) −14.4516 34.5465i −0.457000 1.09246i
\(11\) 49.5250 1.35749 0.678743 0.734376i \(-0.262525\pi\)
0.678743 + 0.734376i \(0.262525\pi\)
\(12\) −4.28610 + 41.3477i −0.103107 + 0.994670i
\(13\) 28.7924 0.614276 0.307138 0.951665i \(-0.400629\pi\)
0.307138 + 0.951665i \(0.400629\pi\)
\(14\) −46.7905 + 23.5510i −0.893235 + 0.449590i
\(15\) −42.9954 53.7046i −0.740091 0.924432i
\(16\) −0.896814 63.9937i −0.0140127 0.999902i
\(17\) 69.2560 0.988061 0.494031 0.869445i \(-0.335523\pi\)
0.494031 + 0.869445i \(0.335523\pi\)
\(18\) 13.3419 + 75.1930i 0.174706 + 0.984621i
\(19\) −24.7890 −0.299315 −0.149658 0.988738i \(-0.547817\pi\)
−0.149658 + 0.988738i \(0.547817\pi\)
\(20\) 75.4177 + 74.3682i 0.843196 + 0.831462i
\(21\) −70.7271 + 65.2585i −0.734949 + 0.678122i
\(22\) −129.227 + 54.0585i −1.25233 + 0.523878i
\(23\) 85.5006i 0.775135i 0.921841 + 0.387568i \(0.126685\pi\)
−0.921841 + 0.387568i \(0.873315\pi\)
\(24\) −33.9488 112.568i −0.288741 0.957407i
\(25\) −50.2885 −0.402308
\(26\) −75.1286 + 31.4281i −0.566690 + 0.237060i
\(27\) 61.5925 + 126.053i 0.439018 + 0.898478i
\(28\) 96.3845 112.526i 0.650534 0.759477i
\(29\) −111.594 −0.714569 −0.357284 0.933996i \(-0.616297\pi\)
−0.357284 + 0.933996i \(0.616297\pi\)
\(30\) 170.809 + 93.2013i 1.03951 + 0.567205i
\(31\) 236.812i 1.37202i 0.727592 + 0.686010i \(0.240640\pi\)
−0.727592 + 0.686010i \(0.759360\pi\)
\(32\) 72.1918 + 166.001i 0.398807 + 0.917035i
\(33\) −200.891 + 160.831i −1.05971 + 0.848396i
\(34\) −180.711 + 75.5957i −0.911519 + 0.381310i
\(35\) 17.1756 + 244.600i 0.0829490 + 1.18128i
\(36\) −116.889 181.639i −0.541155 0.840923i
\(37\) 261.434i 1.16161i −0.814044 0.580804i \(-0.802738\pi\)
0.814044 0.580804i \(-0.197262\pi\)
\(38\) 64.6825 27.0582i 0.276128 0.115511i
\(39\) −116.792 + 93.5026i −0.479531 + 0.383908i
\(40\) −277.965 111.729i −1.09875 0.441647i
\(41\) −471.089 −1.79443 −0.897217 0.441590i \(-0.854415\pi\)
−0.897217 + 0.441590i \(0.854415\pi\)
\(42\) 113.317 247.482i 0.416315 0.909220i
\(43\) 261.133i 0.926101i 0.886332 + 0.463051i \(0.153245\pi\)
−0.886332 + 0.463051i \(0.846755\pi\)
\(44\) 278.186 282.112i 0.953139 0.966590i
\(45\) 348.808 + 78.2183i 1.15549 + 0.259113i
\(46\) −93.3274 223.098i −0.299138 0.715088i
\(47\) 217.418 0.674757 0.337379 0.941369i \(-0.390460\pi\)
0.337379 + 0.941369i \(0.390460\pi\)
\(48\) 211.455 + 256.668i 0.635853 + 0.771810i
\(49\) 339.634 47.9342i 0.990187 0.139750i
\(50\) 131.219 54.8919i 0.371142 0.155258i
\(51\) −280.926 + 224.907i −0.771324 + 0.617514i
\(52\) 161.729 164.012i 0.431305 0.437391i
\(53\) −11.8711 −0.0307665 −0.0153832 0.999882i \(-0.504897\pi\)
−0.0153832 + 0.999882i \(0.504897\pi\)
\(54\) −298.306 261.682i −0.751747 0.659451i
\(55\) 655.694i 1.60752i
\(56\) −128.671 + 398.823i −0.307043 + 0.951696i
\(57\) 100.553 80.5016i 0.233659 0.187065i
\(58\) 291.184 121.809i 0.659213 0.275765i
\(59\) 236.528i 0.521921i −0.965350 0.260960i \(-0.915961\pi\)
0.965350 0.260960i \(-0.0840392\pi\)
\(60\) −547.429 56.7464i −1.17788 0.122099i
\(61\) 754.519 1.58371 0.791855 0.610709i \(-0.209116\pi\)
0.791855 + 0.610709i \(0.209116\pi\)
\(62\) −258.490 617.917i −0.529487 1.26573i
\(63\) 74.9688 494.395i 0.149923 0.988698i
\(64\) −369.568 354.349i −0.721813 0.692088i
\(65\) 381.202i 0.727420i
\(66\) 348.634 638.939i 0.650210 1.19164i
\(67\) 163.127i 0.297449i −0.988879 0.148725i \(-0.952483\pi\)
0.988879 0.148725i \(-0.0475168\pi\)
\(68\) 389.016 394.506i 0.693752 0.703543i
\(69\) −277.661 346.820i −0.484441 0.605105i
\(70\) −311.807 619.490i −0.532401 1.05776i
\(71\) 478.338i 0.799554i 0.916613 + 0.399777i \(0.130912\pi\)
−0.916613 + 0.399777i \(0.869088\pi\)
\(72\) 503.268 + 346.365i 0.823760 + 0.566938i
\(73\) 1038.37i 1.66482i −0.554157 0.832412i \(-0.686959\pi\)
0.554157 0.832412i \(-0.313041\pi\)
\(74\) 285.366 + 682.164i 0.448285 + 1.07162i
\(75\) 203.988 163.310i 0.314059 0.251433i
\(76\) −139.242 + 141.207i −0.210160 + 0.213126i
\(77\) 914.963 64.2482i 1.35415 0.0950878i
\(78\) 202.686 371.461i 0.294226 0.539227i
\(79\) −148.084 −0.210895 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(80\) 847.255 11.8735i 1.18407 0.0165937i
\(81\) −659.194 311.295i −0.904244 0.427016i
\(82\) 1229.22 514.213i 1.65542 0.692504i
\(83\) 739.797i 0.978353i 0.872185 + 0.489176i \(0.162703\pi\)
−0.872185 + 0.489176i \(0.837297\pi\)
\(84\) −25.5448 + 769.449i −0.0331806 + 0.999449i
\(85\) 916.925i 1.17005i
\(86\) −285.037 681.378i −0.357399 0.854359i
\(87\) 452.664 362.398i 0.557824 0.446588i
\(88\) −417.939 + 1039.77i −0.506278 + 1.25954i
\(89\) −1347.82 −1.60527 −0.802635 0.596470i \(-0.796569\pi\)
−0.802635 + 0.596470i \(0.796569\pi\)
\(90\) −995.530 + 176.642i −1.16598 + 0.206885i
\(91\) 531.934 37.3521i 0.612767 0.0430282i
\(92\) 487.042 + 480.264i 0.551930 + 0.544250i
\(93\) −769.039 960.590i −0.857480 1.07106i
\(94\) −567.311 + 237.320i −0.622486 + 0.260401i
\(95\) 328.198i 0.354447i
\(96\) −831.918 438.917i −0.884451 0.466633i
\(97\) 183.115i 0.191675i 0.995397 + 0.0958375i \(0.0305529\pi\)
−0.995397 + 0.0958375i \(0.969447\pi\)
\(98\) −833.891 + 495.800i −0.859548 + 0.511054i
\(99\) 292.588 1304.77i 0.297032 1.32459i
\(100\) −282.475 + 286.461i −0.282475 + 0.286461i
\(101\) 857.904i 0.845194i −0.906318 0.422597i \(-0.861118\pi\)
0.906318 0.422597i \(-0.138882\pi\)
\(102\) 487.531 893.495i 0.473262 0.867345i
\(103\) 493.737i 0.472324i 0.971714 + 0.236162i \(0.0758896\pi\)
−0.971714 + 0.236162i \(0.924110\pi\)
\(104\) −242.978 + 604.493i −0.229096 + 0.569956i
\(105\) −864.000 936.403i −0.803026 0.870320i
\(106\) 30.9755 12.9578i 0.0283831 0.0118733i
\(107\) −583.614 −0.527290 −0.263645 0.964620i \(-0.584925\pi\)
−0.263645 + 0.964620i \(0.584925\pi\)
\(108\) 1064.01 + 357.197i 0.948006 + 0.318253i
\(109\) 1856.22i 1.63113i 0.578665 + 0.815565i \(0.303574\pi\)
−0.578665 + 0.815565i \(0.696426\pi\)
\(110\) −715.716 1710.91i −0.620372 1.48299i
\(111\) 848.999 + 1060.47i 0.725976 + 0.906802i
\(112\) −99.5867 1181.11i −0.0840184 0.996464i
\(113\) 951.492i 0.792114i 0.918226 + 0.396057i \(0.129622\pi\)
−0.918226 + 0.396057i \(0.870378\pi\)
\(114\) −174.504 + 319.812i −0.143366 + 0.262747i
\(115\) −1132.00 −0.917908
\(116\) −626.833 + 635.679i −0.501724 + 0.508804i
\(117\) 170.102 758.558i 0.134410 0.599390i
\(118\) 258.180 + 617.177i 0.201418 + 0.481489i
\(119\) 1279.49 89.8449i 0.985634 0.0692107i
\(120\) 1490.36 449.471i 1.13375 0.341924i
\(121\) 1121.73 0.842770
\(122\) −1968.78 + 823.588i −1.46102 + 0.611182i
\(123\) 1910.90 1529.85i 1.40081 1.12148i
\(124\) 1348.96 + 1330.19i 0.976939 + 0.963344i
\(125\) 989.155i 0.707781i
\(126\) 344.035 + 1371.87i 0.243247 + 0.969965i
\(127\) 2550.61 1.78213 0.891065 0.453876i \(-0.149959\pi\)
0.891065 + 0.453876i \(0.149959\pi\)
\(128\) 1351.11 + 521.212i 0.932985 + 0.359914i
\(129\) −848.020 1059.24i −0.578791 0.722956i
\(130\) −416.097 994.677i −0.280724 0.671069i
\(131\) 439.670i 0.293238i −0.989193 0.146619i \(-0.953161\pi\)
0.989193 0.146619i \(-0.0468391\pi\)
\(132\) −212.269 + 2047.74i −0.139967 + 1.35025i
\(133\) −457.972 + 32.1585i −0.298580 + 0.0209661i
\(134\) 178.059 + 425.650i 0.114791 + 0.274407i
\(135\) −1668.90 + 815.464i −1.06397 + 0.519881i
\(136\) −584.448 + 1454.02i −0.368500 + 0.916773i
\(137\) 1126.88i 0.702745i −0.936236 0.351373i \(-0.885715\pi\)
0.936236 0.351373i \(-0.114285\pi\)
\(138\) 1103.07 + 601.886i 0.680434 + 0.371275i
\(139\) −2419.55 −1.47643 −0.738215 0.674565i \(-0.764331\pi\)
−0.738215 + 0.674565i \(0.764331\pi\)
\(140\) 1489.80 + 1276.10i 0.899366 + 0.770356i
\(141\) −881.921 + 706.057i −0.526745 + 0.421707i
\(142\) −522.125 1248.14i −0.308562 0.737615i
\(143\) 1425.95 0.833871
\(144\) −1691.26 354.440i −0.978738 0.205116i
\(145\) 1477.47i 0.846186i
\(146\) 1133.42 + 2709.44i 0.642485 + 1.53586i
\(147\) −1222.01 + 1297.39i −0.685643 + 0.727938i
\(148\) −1489.22 1468.50i −0.827115 0.815605i
\(149\) 2049.54 1.12688 0.563439 0.826158i \(-0.309478\pi\)
0.563439 + 0.826158i \(0.309478\pi\)
\(150\) −354.008 + 648.789i −0.192698 + 0.353156i
\(151\) 288.181 0.155310 0.0776551 0.996980i \(-0.475257\pi\)
0.0776551 + 0.996980i \(0.475257\pi\)
\(152\) 209.193 520.442i 0.111630 0.277720i
\(153\) 409.156 1824.60i 0.216198 0.964118i
\(154\) −2317.30 + 1166.36i −1.21255 + 0.610313i
\(155\) −3135.31 −1.62473
\(156\) −123.407 + 1190.50i −0.0633364 + 0.611002i
\(157\) −2088.48 −1.06165 −0.530824 0.847482i \(-0.678117\pi\)
−0.530824 + 0.847482i \(0.678117\pi\)
\(158\) 386.398 161.639i 0.194558 0.0813883i
\(159\) 48.1534 38.5511i 0.0240177 0.0192283i
\(160\) −2197.80 + 955.794i −1.08594 + 0.472264i
\(161\) 110.919 + 1579.60i 0.0542959 + 0.773231i
\(162\) 2059.84 + 92.7308i 0.998988 + 0.0449729i
\(163\) 4111.75i 1.97581i 0.155057 + 0.987906i \(0.450444\pi\)
−0.155057 + 0.987906i \(0.549556\pi\)
\(164\) −2646.15 + 2683.49i −1.25993 + 1.27772i
\(165\) −2129.35 2659.72i −1.00466 1.25490i
\(166\) −807.518 1930.37i −0.377564 0.902563i
\(167\) 1224.94 0.567598 0.283799 0.958884i \(-0.408405\pi\)
0.283799 + 0.958884i \(0.408405\pi\)
\(168\) −773.230 2035.62i −0.355095 0.934830i
\(169\) −1368.00 −0.622665
\(170\) −1000.86 2392.55i −0.451544 1.07941i
\(171\) −146.451 + 653.085i −0.0654934 + 0.292062i
\(172\) 1487.50 + 1466.80i 0.659425 + 0.650248i
\(173\) 2451.51i 1.07737i −0.842508 0.538685i \(-0.818921\pi\)
0.842508 0.538685i \(-0.181079\pi\)
\(174\) −785.572 + 1439.71i −0.342265 + 0.627267i
\(175\) −929.068 + 65.2386i −0.401320 + 0.0281804i
\(176\) −44.4147 3169.29i −0.0190221 1.35735i
\(177\) 768.118 + 959.439i 0.326188 + 0.407434i
\(178\) 3516.90 1471.20i 1.48091 0.619502i
\(179\) 926.214 0.386751 0.193376 0.981125i \(-0.438056\pi\)
0.193376 + 0.981125i \(0.438056\pi\)
\(180\) 2404.84 1547.58i 0.995813 0.640830i
\(181\) −876.720 −0.360034 −0.180017 0.983664i \(-0.557615\pi\)
−0.180017 + 0.983664i \(0.557615\pi\)
\(182\) −1347.21 + 678.090i −0.548693 + 0.276173i
\(183\) −3060.59 + 2450.28i −1.23631 + 0.989780i
\(184\) −1795.07 721.536i −0.719210 0.289089i
\(185\) 3461.29 1.37556
\(186\) 3055.19 + 1667.05i 1.20439 + 0.657172i
\(187\) 3429.90 1.34128
\(188\) 1221.25 1238.49i 0.473771 0.480457i
\(189\) 1301.43 + 2248.90i 0.500875 + 0.865520i
\(190\) 358.242 + 856.374i 0.136787 + 0.326989i
\(191\) 2476.56i 0.938208i −0.883143 0.469104i \(-0.844577\pi\)
0.883143 0.469104i \(-0.155423\pi\)
\(192\) 2649.83 + 237.202i 0.996017 + 0.0891593i
\(193\) 3130.49 1.16755 0.583776 0.811915i \(-0.301575\pi\)
0.583776 + 0.811915i \(0.301575\pi\)
\(194\) −199.877 477.804i −0.0739708 0.176827i
\(195\) −1237.94 1546.29i −0.454620 0.567856i
\(196\) 1634.70 2203.92i 0.595737 0.803180i
\(197\) 85.4470 0.0309028 0.0154514 0.999881i \(-0.495081\pi\)
0.0154514 + 0.999881i \(0.495081\pi\)
\(198\) 660.756 + 3723.94i 0.237161 + 1.33661i
\(199\) 3536.74i 1.25986i −0.776650 0.629932i \(-0.783083\pi\)
0.776650 0.629932i \(-0.216917\pi\)
\(200\) 424.382 1055.80i 0.150042 0.373282i
\(201\) 529.749 + 661.699i 0.185899 + 0.232202i
\(202\) 936.437 + 2238.54i 0.326176 + 0.779720i
\(203\) −2061.67 + 144.770i −0.712814 + 0.0500534i
\(204\) −296.838 + 2863.57i −0.101876 + 0.982795i
\(205\) 6237.06i 2.12495i
\(206\) −538.934 1288.32i −0.182278 0.435735i
\(207\) 2252.58 + 505.128i 0.756352 + 0.169608i
\(208\) −25.8215 1842.54i −0.00860767 0.614216i
\(209\) −1227.68 −0.406317
\(210\) 3276.57 + 1500.28i 1.07669 + 0.492997i
\(211\) 1696.15i 0.553403i −0.960956 0.276701i \(-0.910759\pi\)
0.960956 0.276701i \(-0.0892413\pi\)
\(212\) −66.6810 + 67.6221i −0.0216022 + 0.0219071i
\(213\) −1553.39 1940.31i −0.499702 0.624167i
\(214\) 1522.83 637.038i 0.486443 0.203491i
\(215\) −3457.31 −1.09668
\(216\) −3166.24 + 229.370i −0.997386 + 0.0722531i
\(217\) 307.213 + 4375.04i 0.0961059 + 1.36865i
\(218\) −2026.13 4843.46i −0.629482 1.50477i
\(219\) 3372.08 + 4211.99i 1.04047 + 1.29964i
\(220\) 3735.06 + 3683.09i 1.14463 + 1.12870i
\(221\) 1994.05 0.606942
\(222\) −3372.85 1840.38i −1.01969 0.556388i
\(223\) 3936.51i 1.18210i −0.806635 0.591050i \(-0.798714\pi\)
0.806635 0.591050i \(-0.201286\pi\)
\(224\) 1549.08 + 2973.18i 0.462063 + 0.886847i
\(225\) −297.099 + 1324.89i −0.0880292 + 0.392559i
\(226\) −1038.59 2482.75i −0.305691 0.730751i
\(227\) 6229.85i 1.82154i −0.412912 0.910771i \(-0.635488\pi\)
0.412912 0.910771i \(-0.364512\pi\)
\(228\) 106.248 1024.97i 0.0308617 0.297720i
\(229\) 3973.83 1.14672 0.573359 0.819304i \(-0.305640\pi\)
0.573359 + 0.819304i \(0.305640\pi\)
\(230\) 2953.75 1235.62i 0.846801 0.354237i
\(231\) −3502.76 + 3231.93i −0.997683 + 0.920542i
\(232\) 941.737 2342.90i 0.266500 0.663013i
\(233\) 3401.07i 0.956273i −0.878285 0.478137i \(-0.841312\pi\)
0.878285 0.478137i \(-0.158688\pi\)
\(234\) 384.145 + 2164.99i 0.107318 + 0.604829i
\(235\) 2878.53i 0.799042i
\(236\) −1347.35 1328.60i −0.371630 0.366459i
\(237\) 600.679 480.898i 0.164634 0.131804i
\(238\) −3240.52 + 1631.05i −0.882571 + 0.444223i
\(239\) 4477.57i 1.21184i −0.795525 0.605920i \(-0.792805\pi\)
0.795525 0.605920i \(-0.207195\pi\)
\(240\) −3398.20 + 2799.60i −0.913970 + 0.752972i
\(241\) 2312.70i 0.618151i 0.951037 + 0.309076i \(0.100020\pi\)
−0.951037 + 0.309076i \(0.899980\pi\)
\(242\) −2926.94 + 1224.41i −0.777483 + 0.325240i
\(243\) 3684.84 877.992i 0.972768 0.231783i
\(244\) 4238.20 4298.01i 1.11198 1.12767i
\(245\) 634.632 + 4496.64i 0.165490 + 1.17257i
\(246\) −3316.26 + 6077.69i −0.859500 + 1.57520i
\(247\) −713.737 −0.183862
\(248\) −4971.83 1998.44i −1.27303 0.511699i
\(249\) −2402.47 3000.87i −0.611447 0.763745i
\(250\) −1079.70 2581.02i −0.273145 0.652952i
\(251\) 4493.21i 1.12992i 0.825119 + 0.564958i \(0.191108\pi\)
−0.825119 + 0.564958i \(0.808892\pi\)
\(252\) −2395.14 3204.11i −0.598729 0.800951i
\(253\) 4234.42i 1.05224i
\(254\) −6655.36 + 2784.10i −1.64407 + 0.687755i
\(255\) −2977.69 3719.37i −0.731255 0.913395i
\(256\) −4094.39 + 114.781i −0.999607 + 0.0280227i
\(257\) −1431.96 −0.347562 −0.173781 0.984784i \(-0.555598\pi\)
−0.173781 + 0.984784i \(0.555598\pi\)
\(258\) 3368.96 + 1838.26i 0.812955 + 0.443585i
\(259\) −339.155 4829.93i −0.0813670 1.15875i
\(260\) 2171.46 + 2141.24i 0.517955 + 0.510747i
\(261\) −659.285 + 2940.03i −0.156355 + 0.697253i
\(262\) 479.917 + 1147.24i 0.113166 + 0.270521i
\(263\) 902.626i 0.211629i 0.994386 + 0.105814i \(0.0337449\pi\)
−0.994386 + 0.105814i \(0.966255\pi\)
\(264\) −1681.32 5574.91i −0.391962 1.29967i
\(265\) 157.170i 0.0364334i
\(266\) 1159.89 583.806i 0.267359 0.134569i
\(267\) 5467.24 4377.02i 1.25314 1.00325i
\(268\) −929.227 916.296i −0.211797 0.208850i
\(269\) 1889.72i 0.428321i −0.976798 0.214160i \(-0.931298\pi\)
0.976798 0.214160i \(-0.0687015\pi\)
\(270\) 3464.58 3949.47i 0.780916 0.890212i
\(271\) 7620.90i 1.70825i 0.520065 + 0.854127i \(0.325908\pi\)
−0.520065 + 0.854127i \(0.674092\pi\)
\(272\) −62.1097 4431.95i −0.0138454 0.987964i
\(273\) −2036.41 + 1878.95i −0.451461 + 0.416554i
\(274\) 1230.04 + 2940.40i 0.271202 + 0.648306i
\(275\) −2490.54 −0.546128
\(276\) −3535.25 366.464i −0.771004 0.0799222i
\(277\) 2983.80i 0.647218i 0.946191 + 0.323609i \(0.104896\pi\)
−0.946191 + 0.323609i \(0.895104\pi\)
\(278\) 6313.38 2641.04i 1.36206 0.569781i
\(279\) 6238.98 + 1399.06i 1.33877 + 0.300213i
\(280\) −5280.28 1703.56i −1.12699 0.363598i
\(281\) 2988.80i 0.634508i −0.948341 0.317254i \(-0.897239\pi\)
0.948341 0.317254i \(-0.102761\pi\)
\(282\) 1530.52 2804.98i 0.323196 0.592319i
\(283\) 3150.99 0.661861 0.330930 0.943655i \(-0.392637\pi\)
0.330930 + 0.943655i \(0.392637\pi\)
\(284\) 2724.78 + 2686.86i 0.569317 + 0.561395i
\(285\) 1065.81 + 1331.29i 0.221521 + 0.276697i
\(286\) −3720.75 + 1556.48i −0.769274 + 0.321806i
\(287\) −8703.27 + 611.138i −1.79003 + 0.125695i
\(288\) 4799.92 921.230i 0.982076 0.188486i
\(289\) −116.610 −0.0237350
\(290\) 1612.71 + 3855.18i 0.326558 + 0.780635i
\(291\) −594.659 742.776i −0.119792 0.149630i
\(292\) −5914.93 5832.62i −1.18543 1.16893i
\(293\) 1635.98i 0.326194i 0.986610 + 0.163097i \(0.0521484\pi\)
−0.986610 + 0.163097i \(0.947852\pi\)
\(294\) 1772.46 4719.17i 0.351605 0.936149i
\(295\) 3131.55 0.618054
\(296\) 5488.77 + 2206.23i 1.07780 + 0.433224i
\(297\) 3050.37 + 6242.78i 0.595961 + 1.21967i
\(298\) −5347.90 + 2237.15i −1.03958 + 0.434882i
\(299\) 2461.77i 0.476147i
\(300\) 215.541 2079.31i 0.0414810 0.400164i
\(301\) 338.764 + 4824.37i 0.0648706 + 0.923827i
\(302\) −751.956 + 314.561i −0.143279 + 0.0599369i
\(303\) 2786.02 + 3479.96i 0.528226 + 0.659796i
\(304\) 22.2311 + 1586.34i 0.00419422 + 0.299286i
\(305\) 9989.58i 1.87541i
\(306\) 924.004 + 5207.57i 0.172620 + 0.972865i
\(307\) 3788.51 0.704305 0.352152 0.935943i \(-0.385450\pi\)
0.352152 + 0.935943i \(0.385450\pi\)
\(308\) 4773.44 5572.84i 0.883091 1.03098i
\(309\) −1603.40 2002.77i −0.295191 0.368717i
\(310\) 8181.01 3422.31i 1.49887 0.627014i
\(311\) −4998.37 −0.911356 −0.455678 0.890145i \(-0.650603\pi\)
−0.455678 + 0.890145i \(0.650603\pi\)
\(312\) −977.470 3241.10i −0.177367 0.588112i
\(313\) 1152.65i 0.208152i 0.994569 + 0.104076i \(0.0331885\pi\)
−0.994569 + 0.104076i \(0.966812\pi\)
\(314\) 5449.50 2279.66i 0.979406 0.409709i
\(315\) 6545.62 + 992.561i 1.17081 + 0.177538i
\(316\) −831.799 + 843.537i −0.148077 + 0.150167i
\(317\) −2738.80 −0.485256 −0.242628 0.970119i \(-0.578009\pi\)
−0.242628 + 0.970119i \(0.578009\pi\)
\(318\) −83.5674 + 153.153i −0.0147366 + 0.0270076i
\(319\) −5526.70 −0.970018
\(320\) 4691.46 4892.95i 0.819565 0.854764i
\(321\) 2367.34 1895.27i 0.411626 0.329544i
\(322\) −2013.62 4000.62i −0.348493 0.692378i
\(323\) −1716.79 −0.295742
\(324\) −5475.99 + 2006.43i −0.938956 + 0.344038i
\(325\) −1447.93 −0.247128
\(326\) −4488.14 10728.9i −0.762500 1.82275i
\(327\) −6028.01 7529.46i −1.01942 1.27333i
\(328\) 3975.50 9890.45i 0.669239 1.66497i
\(329\) 4016.74 282.053i 0.673100 0.0472647i
\(330\) 8459.34 + 4615.79i 1.41112 + 0.769973i
\(331\) 5222.20i 0.867184i −0.901109 0.433592i \(-0.857246\pi\)
0.901109 0.433592i \(-0.142754\pi\)
\(332\) 4214.14 + 4155.50i 0.696630 + 0.686936i
\(333\) −6887.66 1544.52i −1.13346 0.254172i
\(334\) −3196.26 + 1337.07i −0.523628 + 0.219046i
\(335\) 2159.74 0.352237
\(336\) 4239.56 + 4467.57i 0.688354 + 0.725374i
\(337\) −2898.62 −0.468540 −0.234270 0.972172i \(-0.575270\pi\)
−0.234270 + 0.972172i \(0.575270\pi\)
\(338\) 3569.53 1493.22i 0.574429 0.240297i
\(339\) −3089.94 3859.58i −0.495052 0.618359i
\(340\) 5223.13 + 5150.44i 0.833129 + 0.821535i
\(341\) 11728.1i 1.86250i
\(342\) −330.732 1863.96i −0.0522922 0.294712i
\(343\) 6212.48 1326.18i 0.977966 0.208766i
\(344\) −5482.44 2203.69i −0.859284 0.345392i
\(345\) 4591.78 3676.13i 0.716560 0.573670i
\(346\) 2675.92 + 6396.77i 0.415776 + 0.993909i
\(347\) −10559.0 −1.63353 −0.816765 0.576970i \(-0.804235\pi\)
−0.816765 + 0.576970i \(0.804235\pi\)
\(348\) 478.303 4614.15i 0.0736774 0.710760i
\(349\) −4344.86 −0.666404 −0.333202 0.942855i \(-0.608129\pi\)
−0.333202 + 0.942855i \(0.608129\pi\)
\(350\) 2353.02 1184.34i 0.359355 0.180874i
\(351\) 1773.40 + 3629.37i 0.269678 + 0.551914i
\(352\) 3575.30 + 8221.20i 0.541375 + 1.24486i
\(353\) 9819.24 1.48053 0.740263 0.672318i \(-0.234701\pi\)
0.740263 + 0.672318i \(0.234701\pi\)
\(354\) −3051.53 1665.05i −0.458155 0.249990i
\(355\) −6333.03 −0.946824
\(356\) −7570.83 + 7677.68i −1.12712 + 1.14302i
\(357\) −4898.28 + 4519.54i −0.726175 + 0.670026i
\(358\) −2416.79 + 1011.00i −0.356791 + 0.149254i
\(359\) 728.937i 0.107164i −0.998563 0.0535820i \(-0.982936\pi\)
0.998563 0.0535820i \(-0.0170638\pi\)
\(360\) −4585.76 + 6663.10i −0.671363 + 0.975489i
\(361\) −6244.50 −0.910410
\(362\) 2287.64 956.975i 0.332143 0.138943i
\(363\) −4550.11 + 3642.77i −0.657903 + 0.526711i
\(364\) 2775.14 3239.89i 0.399607 0.466529i
\(365\) 13747.7 1.97147
\(366\) 5311.48 9734.31i 0.758567 1.39022i
\(367\) 8207.43i 1.16737i −0.811981 0.583685i \(-0.801610\pi\)
0.811981 0.583685i \(-0.198390\pi\)
\(368\) 5471.50 76.6782i 0.775059 0.0108618i
\(369\) −2783.14 + 12411.2i −0.392641 + 1.75095i
\(370\) −9031.62 + 3778.14i −1.26900 + 0.530855i
\(371\) −219.316 + 15.4003i −0.0306909 + 0.00215510i
\(372\) −9791.61 1015.00i −1.36471 0.141466i
\(373\) 6620.48i 0.919023i −0.888172 0.459511i \(-0.848025\pi\)
0.888172 0.459511i \(-0.151975\pi\)
\(374\) −8949.71 + 3743.88i −1.23738 + 0.517624i
\(375\) −3212.25 4012.35i −0.442346 0.552525i
\(376\) −1834.78 + 4564.65i −0.251653 + 0.626074i
\(377\) −3213.07 −0.438942
\(378\) −5850.62 4447.52i −0.796093 0.605174i
\(379\) 2808.73i 0.380672i 0.981719 + 0.190336i \(0.0609578\pi\)
−0.981719 + 0.190336i \(0.939042\pi\)
\(380\) −1869.53 1843.52i −0.252382 0.248869i
\(381\) −10346.2 + 8283.04i −1.39121 + 1.11379i
\(382\) 2703.27 + 6462.13i 0.362071 + 0.865528i
\(383\) 2395.34 0.319573 0.159786 0.987152i \(-0.448919\pi\)
0.159786 + 0.987152i \(0.448919\pi\)
\(384\) −7173.18 + 2273.46i −0.953267 + 0.302128i
\(385\) 850.624 + 12113.8i 0.112602 + 1.60357i
\(386\) −8168.44 + 3417.05i −1.07711 + 0.450579i
\(387\) 6879.73 + 1542.74i 0.903660 + 0.202641i
\(388\) 1043.09 + 1028.57i 0.136481 + 0.134582i
\(389\) 12078.7 1.57432 0.787162 0.616746i \(-0.211550\pi\)
0.787162 + 0.616746i \(0.211550\pi\)
\(390\) 4918.02 + 2683.49i 0.638548 + 0.348420i
\(391\) 5921.43i 0.765881i
\(392\) −1859.79 + 7535.08i −0.239626 + 0.970865i
\(393\) 1427.81 + 1783.45i 0.183266 + 0.228914i
\(394\) −222.958 + 93.2688i −0.0285088 + 0.0119259i
\(395\) 1960.58i 0.249740i
\(396\) −5788.95 8995.69i −0.734610 1.14154i
\(397\) 5240.22 0.662466 0.331233 0.943549i \(-0.392535\pi\)
0.331233 + 0.943549i \(0.392535\pi\)
\(398\) 3860.50 + 9228.48i 0.486204 + 1.16227i
\(399\) 1753.26 1617.69i 0.219982 0.202973i
\(400\) 45.0994 + 3218.15i 0.00563743 + 0.402268i
\(401\) 10649.8i 1.32625i 0.748509 + 0.663125i \(0.230770\pi\)
−0.748509 + 0.663125i \(0.769230\pi\)
\(402\) −2104.55 1148.34i −0.261109 0.142473i
\(403\) 6818.39i 0.842799i
\(404\) −4886.92 4818.92i −0.601815 0.593441i
\(405\) 4121.44 8727.50i 0.505669 1.07080i
\(406\) 5221.54 2628.15i 0.638278 0.321263i
\(407\) 12947.5i 1.57687i
\(408\) −2351.16 7795.98i −0.285294 0.945977i
\(409\) 10197.5i 1.23284i −0.787416 0.616421i \(-0.788582\pi\)
0.787416 0.616421i \(-0.211418\pi\)
\(410\) 6808.00 + 16274.5i 0.820057 + 1.96034i
\(411\) 3659.52 + 4571.03i 0.439199 + 0.548594i
\(412\) 2812.50 + 2773.36i 0.336315 + 0.331635i
\(413\) −306.845 4369.80i −0.0365590 0.520639i
\(414\) −6429.05 + 1140.74i −0.763214 + 0.135421i
\(415\) −9794.66 −1.15856
\(416\) 2078.58 + 4779.58i 0.244978 + 0.563312i
\(417\) 9814.54 7857.43i 1.15257 0.922733i
\(418\) 3203.40 1340.06i 0.374841 0.156805i
\(419\) 9402.75i 1.09631i −0.836376 0.548155i \(-0.815330\pi\)
0.836376 0.548155i \(-0.184670\pi\)
\(420\) −10187.2 338.205i −1.18354 0.0392921i
\(421\) 1525.15i 0.176559i −0.996096 0.0882793i \(-0.971863\pi\)
0.996096 0.0882793i \(-0.0281368\pi\)
\(422\) 1851.42 + 4425.80i 0.213568 + 0.510532i
\(423\) 1284.48 5728.02i 0.147644 0.658406i
\(424\) 100.180 249.233i 0.0114744 0.0285467i
\(425\) −3482.78 −0.397505
\(426\) 6171.21 + 3367.29i 0.701868 + 0.382971i
\(427\) 13939.6 978.829i 1.57982 0.110934i
\(428\) −3278.20 + 3324.47i −0.370229 + 0.375454i
\(429\) −5784.13 + 4630.72i −0.650957 + 0.521149i
\(430\) 9021.21 3773.79i 1.01172 0.423229i
\(431\) 7819.69i 0.873924i 0.899480 + 0.436962i \(0.143946\pi\)
−0.899480 + 0.436962i \(0.856054\pi\)
\(432\) 8011.36 4054.58i 0.892238 0.451565i
\(433\) 11246.6i 1.24821i −0.781340 0.624106i \(-0.785464\pi\)
0.781340 0.624106i \(-0.214536\pi\)
\(434\) −5577.15 11080.5i −0.616847 1.22554i
\(435\) 4798.03 + 5993.12i 0.528846 + 0.660570i
\(436\) 10573.7 + 10426.5i 1.16144 + 1.14527i
\(437\) 2119.48i 0.232010i
\(438\) −13396.4 7309.67i −1.46142 0.797419i
\(439\) 5899.62i 0.641397i 0.947181 + 0.320698i \(0.103918\pi\)
−0.947181 + 0.320698i \(0.896082\pi\)
\(440\) −13766.2 5533.37i −1.49154 0.599530i
\(441\) 743.658 9231.09i 0.0803000 0.996771i
\(442\) −5203.11 + 2176.58i −0.559924 + 0.234230i
\(443\) 991.808 0.106371 0.0531854 0.998585i \(-0.483063\pi\)
0.0531854 + 0.998585i \(0.483063\pi\)
\(444\) 10809.7 + 1120.53i 1.15542 + 0.119770i
\(445\) 17844.7i 1.90095i
\(446\) 4296.86 + 10271.6i 0.456193 + 1.09053i
\(447\) −8313.64 + 6655.81i −0.879690 + 0.704271i
\(448\) −7287.38 6067.08i −0.768518 0.639828i
\(449\) 13929.7i 1.46411i −0.681248 0.732053i \(-0.738562\pi\)
0.681248 0.732053i \(-0.261438\pi\)
\(450\) −670.942 3781.34i −0.0702856 0.396121i
\(451\) −23330.7 −2.43592
\(452\) 5420.03 + 5344.61i 0.564020 + 0.556171i
\(453\) −1168.96 + 935.859i −0.121242 + 0.0970651i
\(454\) 6800.14 + 16255.7i 0.702965 + 1.68043i
\(455\) 494.529 + 7042.62i 0.0509535 + 0.725633i
\(456\) 841.559 + 2790.44i 0.0864246 + 0.286567i
\(457\) −10005.2 −1.02412 −0.512060 0.858950i \(-0.671117\pi\)
−0.512060 + 0.858950i \(0.671117\pi\)
\(458\) −10369.0 + 4337.60i −1.05789 + 0.442539i
\(459\) 4265.65 + 8729.92i 0.433777 + 0.887752i
\(460\) −6358.53 + 6448.26i −0.644496 + 0.653591i
\(461\) 15566.9i 1.57272i −0.617770 0.786359i \(-0.711964\pi\)
0.617770 0.786359i \(-0.288036\pi\)
\(462\) 5612.04 12256.5i 0.565143 1.23425i
\(463\) −10866.3 −1.09071 −0.545357 0.838204i \(-0.683606\pi\)
−0.545357 + 0.838204i \(0.683606\pi\)
\(464\) 100.079 + 7141.32i 0.0100131 + 0.714499i
\(465\) 12717.9 10181.8i 1.26834 1.01542i
\(466\) 3712.41 + 8874.48i 0.369043 + 0.882194i
\(467\) 2184.04i 0.216414i 0.994128 + 0.108207i \(0.0345109\pi\)
−0.994128 + 0.108207i \(0.965489\pi\)
\(468\) −3365.53 5229.84i −0.332418 0.516559i
\(469\) −211.622 3013.73i −0.0208354 0.296719i
\(470\) −3142.03 7511.01i −0.308364 0.737142i
\(471\) 8471.59 6782.27i 0.828769 0.663504i
\(472\) 4965.87 + 1996.05i 0.484264 + 0.194652i
\(473\) 12932.6i 1.25717i
\(474\) −1042.44 + 1910.48i −0.101015 + 0.185129i
\(475\) 1246.60 0.120417
\(476\) 6675.20 7793.08i 0.642767 0.750410i
\(477\) −70.1332 + 312.753i −0.00673203 + 0.0300209i
\(478\) 4887.45 + 11683.4i 0.467671 + 1.11796i
\(479\) 7028.43 0.670433 0.335216 0.942141i \(-0.391191\pi\)
0.335216 + 0.942141i \(0.391191\pi\)
\(480\) 5811.11 11014.3i 0.552583 1.04736i
\(481\) 7527.32i 0.713547i
\(482\) −2524.41 6034.58i −0.238555 0.570265i
\(483\) −5579.64 6047.22i −0.525637 0.569685i
\(484\) 6300.83 6389.75i 0.591738 0.600089i
\(485\) −2424.37 −0.226980
\(486\) −8656.55 + 6313.11i −0.807961 + 0.589236i
\(487\) 3566.36 0.331842 0.165921 0.986139i \(-0.446940\pi\)
0.165921 + 0.986139i \(0.446940\pi\)
\(488\) −6367.35 + 15841.0i −0.590649 + 1.46945i
\(489\) −13352.8 16678.7i −1.23483 1.54241i
\(490\) −6564.22 11040.4i −0.605186 1.01787i
\(491\) −2231.72 −0.205124 −0.102562 0.994727i \(-0.532704\pi\)
−0.102562 + 0.994727i \(0.532704\pi\)
\(492\) 2019.13 19478.4i 0.185020 1.78487i
\(493\) −7728.56 −0.706038
\(494\) 1862.37 779.072i 0.169619 0.0709557i
\(495\) 17274.7 + 3873.76i 1.56857 + 0.351743i
\(496\) 15154.5 212.376i 1.37189 0.0192257i
\(497\) 620.542 + 8837.19i 0.0560063 + 0.797590i
\(498\) 9544.38 + 5207.84i 0.858823 + 0.468612i
\(499\) 20669.1i 1.85426i −0.374743 0.927129i \(-0.622269\pi\)
0.374743 0.927129i \(-0.377731\pi\)
\(500\) 5634.57 + 5556.16i 0.503971 + 0.496958i
\(501\) −4968.79 + 3977.96i −0.443092 + 0.354735i
\(502\) −4904.52 11724.2i −0.436055 1.04239i
\(503\) 17146.1 1.51990 0.759948 0.649984i \(-0.225225\pi\)
0.759948 + 0.649984i \(0.225225\pi\)
\(504\) 9747.10 + 5746.14i 0.861449 + 0.507844i
\(505\) 11358.4 1.00087
\(506\) −4622.04 11048.9i −0.406076 0.970723i
\(507\) 5549.06 4442.52i 0.486080 0.389151i
\(508\) 14327.0 14529.2i 1.25130 1.26895i
\(509\) 7036.98i 0.612787i −0.951905 0.306393i \(-0.900878\pi\)
0.951905 0.306393i \(-0.0991223\pi\)
\(510\) 11829.6 + 6454.74i 1.02710 + 0.560433i
\(511\) −1347.07 19183.7i −0.116616 1.66074i
\(512\) 10558.3 4768.69i 0.911356 0.411618i
\(513\) −1526.82 3124.73i −0.131405 0.268928i
\(514\) 3736.44 1563.04i 0.320637 0.134130i
\(515\) −6536.91 −0.559322
\(516\) −10797.2 1119.24i −0.921166 0.0954880i
\(517\) 10767.6 0.915974
\(518\) 6157.03 + 12232.6i 0.522247 + 1.03759i
\(519\) 7961.20 + 9944.17i 0.673330 + 0.841042i
\(520\) −8003.28 3216.95i −0.674937 0.271293i
\(521\) 5554.16 0.467048 0.233524 0.972351i \(-0.424974\pi\)
0.233524 + 0.972351i \(0.424974\pi\)
\(522\) −1488.87 8391.10i −0.124839 0.703579i
\(523\) 1129.07 0.0943994 0.0471997 0.998885i \(-0.484970\pi\)
0.0471997 + 0.998885i \(0.484970\pi\)
\(524\) −2504.51 2469.66i −0.208798 0.205892i
\(525\) 3556.76 3281.75i 0.295676 0.272814i
\(526\) −985.253 2355.24i −0.0816712 0.195234i
\(527\) 16400.6i 1.35564i
\(528\) 10472.3 + 12711.5i 0.863162 + 1.04772i
\(529\) 4856.64 0.399165
\(530\) 171.557 + 410.105i 0.0140603 + 0.0336110i
\(531\) −6231.50 1397.38i −0.509273 0.114202i
\(532\) −2389.28 + 2789.40i −0.194715 + 0.227323i
\(533\) −13563.8 −1.10228
\(534\) −9488.08 + 17388.7i −0.768894 + 1.40915i
\(535\) 7726.84i 0.624412i
\(536\) 3424.82 + 1376.62i 0.275989 + 0.110935i
\(537\) −3757.04 + 3007.85i −0.301915 + 0.241710i
\(538\) 2062.71 + 4930.88i 0.165297 + 0.395140i
\(539\) 16820.4 2373.94i 1.34417 0.189708i
\(540\) −4729.17 + 14087.2i −0.376872 + 1.12262i
\(541\) 13088.7i 1.04016i 0.854118 + 0.520079i \(0.174097\pi\)
−0.854118 + 0.520079i \(0.825903\pi\)
\(542\) −8318.52 19885.4i −0.659245 1.57592i
\(543\) 3556.28 2847.12i 0.281058 0.225012i
\(544\) 4999.71 + 11496.6i 0.394046 + 0.906087i
\(545\) −24575.7 −1.93157
\(546\) 3262.68 7125.60i 0.255733 0.558512i
\(547\) 134.806i 0.0105373i −0.999986 0.00526863i \(-0.998323\pi\)
0.999986 0.00526863i \(-0.00167706\pi\)
\(548\) −6419.12 6329.79i −0.500385 0.493422i
\(549\) 4457.61 19878.4i 0.346532 1.54533i
\(550\) 6498.61 2718.52i 0.503821 0.210760i
\(551\) 2766.31 0.213881
\(552\) 9624.61 2902.65i 0.742120 0.223813i
\(553\) −2735.81 + 192.107i −0.210377 + 0.0147726i
\(554\) −3256.94 7785.69i −0.249773 0.597080i
\(555\) −14040.2 + 11240.4i −1.07383 + 0.859695i
\(556\) −13590.8 + 13782.6i −1.03665 + 1.05128i
\(557\) 949.790 0.0722512 0.0361256 0.999347i \(-0.488498\pi\)
0.0361256 + 0.999347i \(0.488498\pi\)
\(558\) −17806.6 + 3159.51i −1.35092 + 0.239700i
\(559\) 7518.65i 0.568882i
\(560\) 15637.4 1318.49i 1.18000 0.0994938i
\(561\) −13912.9 + 11138.5i −1.04706 + 0.838267i
\(562\) 3262.40 + 7798.73i 0.244868 + 0.585355i
\(563\) 3122.65i 0.233755i −0.993146 0.116877i \(-0.962712\pi\)
0.993146 0.116877i \(-0.0372884\pi\)
\(564\) −931.872 + 8989.71i −0.0695725 + 0.671161i
\(565\) −12597.4 −0.938014
\(566\) −8221.92 + 3439.43i −0.610589 + 0.255424i
\(567\) −12582.3 4895.94i −0.931934 0.362628i
\(568\) −10042.6 4036.67i −0.741866 0.298196i
\(569\) 15497.7i 1.14182i −0.821011 0.570912i \(-0.806590\pi\)
0.821011 0.570912i \(-0.193410\pi\)
\(570\) −4234.20 2310.37i −0.311142 0.169773i
\(571\) 11912.4i 0.873063i −0.899689 0.436531i \(-0.856207\pi\)
0.899689 0.436531i \(-0.143793\pi\)
\(572\) 8009.65 8122.69i 0.585490 0.593753i
\(573\) 8042.56 + 10045.8i 0.586357 + 0.732406i
\(574\) 22042.5 11094.6i 1.60285 0.806760i
\(575\) 4299.70i 0.311843i
\(576\) −11519.0 + 7643.08i −0.833258 + 0.552885i
\(577\) 5650.41i 0.407677i 0.979005 + 0.203838i \(0.0653417\pi\)
−0.979005 + 0.203838i \(0.934658\pi\)
\(578\) 304.273 127.285i 0.0218963 0.00915977i
\(579\) −12698.3 + 10166.2i −0.911443 + 0.729692i
\(580\) −8416.17 8299.05i −0.602521 0.594137i
\(581\) 959.729 + 13667.6i 0.0685306 + 0.975949i
\(582\) 2362.42 + 1289.05i 0.168257 + 0.0918087i
\(583\) −587.917 −0.0417651
\(584\) 21800.5 + 8762.77i 1.54471 + 0.620901i
\(585\) 10043.0 + 2252.10i 0.709793 + 0.159167i
\(586\) −1785.74 4268.79i −0.125884 0.300925i
\(587\) 9396.05i 0.660675i 0.943863 + 0.330338i \(0.107163\pi\)
−0.943863 + 0.330338i \(0.892837\pi\)
\(588\) 526.262 + 14248.5i 0.0369093 + 0.999319i
\(589\) 5870.33i 0.410667i
\(590\) −8171.21 + 3418.21i −0.570175 + 0.238518i
\(591\) −346.603 + 277.487i −0.0241241 + 0.0193135i
\(592\) −16730.1 + 234.458i −1.16149 + 0.0162773i
\(593\) −5680.51 −0.393374 −0.196687 0.980466i \(-0.563018\pi\)
−0.196687 + 0.980466i \(0.563018\pi\)
\(594\) −14773.6 12959.8i −1.02049 0.895196i
\(595\) 1189.52 + 16940.0i 0.0819587 + 1.16718i
\(596\) 11512.4 11674.9i 0.791220 0.802386i
\(597\) 11485.5 + 14346.2i 0.787385 + 0.983506i
\(598\) −2687.12 6423.55i −0.183754 0.439261i
\(599\) 11213.1i 0.764866i −0.923983 0.382433i \(-0.875086\pi\)
0.923983 0.382433i \(-0.124914\pi\)
\(600\) 1707.24 + 5660.86i 0.116163 + 0.385173i
\(601\) 4599.55i 0.312179i 0.987743 + 0.156089i \(0.0498888\pi\)
−0.987743 + 0.156089i \(0.950111\pi\)
\(602\) −6149.93 12218.5i −0.416366 0.827226i
\(603\) −4297.69 963.734i −0.290241 0.0650850i
\(604\) 1618.74 1641.58i 0.109049 0.110588i
\(605\) 14851.3i 0.998000i
\(606\) −11068.1 6039.26i −0.741933 0.404832i
\(607\) 27115.8i 1.81318i 0.422017 + 0.906588i \(0.361322\pi\)
−0.422017 + 0.906588i \(0.638678\pi\)
\(608\) −1789.56 4115.00i −0.119369 0.274483i
\(609\) 7892.73 7282.46i 0.525172 0.484565i
\(610\) −10904.0 26066.0i −0.723756 1.73013i
\(611\) 6259.98 0.414487
\(612\) −8095.29 12579.6i −0.534694 0.830884i
\(613\) 2010.26i 0.132453i 0.997805 + 0.0662263i \(0.0210959\pi\)
−0.997805 + 0.0662263i \(0.978904\pi\)
\(614\) −9885.42 + 4135.31i −0.649745 + 0.271804i
\(615\) 20254.7 + 25299.7i 1.32804 + 1.65883i
\(616\) −6372.45 + 19751.7i −0.416807 + 1.29191i
\(617\) 15659.8i 1.02178i 0.859646 + 0.510891i \(0.170684\pi\)
−0.859646 + 0.510891i \(0.829316\pi\)
\(618\) 6369.87 + 3475.69i 0.414618 + 0.226234i
\(619\) 27135.8 1.76200 0.881001 0.473115i \(-0.156870\pi\)
0.881001 + 0.473115i \(0.156870\pi\)
\(620\) −17611.3 + 17859.8i −1.14078 + 1.15688i
\(621\) −10777.6 + 5266.20i −0.696442 + 0.340298i
\(622\) 13042.3 5455.92i 0.840756 0.351708i
\(623\) −24900.7 + 1748.52i −1.60133 + 0.112444i
\(624\) 6088.32 + 7390.11i 0.390589 + 0.474104i
\(625\) −19382.1 −1.24046
\(626\) −1258.16 3007.62i −0.0803294 0.192027i
\(627\) 4979.88 3986.84i 0.317189 0.253938i
\(628\) −11731.2 + 11896.7i −0.745420 + 0.755940i
\(629\) 18105.9i 1.14774i
\(630\) −18163.0 + 4554.90i −1.14862 + 0.288050i
\(631\) 854.200 0.0538909 0.0269455 0.999637i \(-0.491422\pi\)
0.0269455 + 0.999637i \(0.491422\pi\)
\(632\) 1249.67 3109.00i 0.0786540 0.195679i
\(633\) 5508.20 + 6880.18i 0.345863 + 0.432011i
\(634\) 7146.39 2989.51i 0.447665 0.187269i
\(635\) 33769.3i 2.11038i
\(636\) 50.8808 490.843i 0.00317225 0.0306025i
\(637\) 9778.89 1380.14i 0.608248 0.0858449i
\(638\) 14420.9 6032.61i 0.894873 0.374347i
\(639\) 12602.2 + 2825.97i 0.780178 + 0.174951i
\(640\) −6900.66 + 17888.2i −0.426207 + 1.10483i
\(641\) 29337.9i 1.80777i −0.427779 0.903884i \(-0.640704\pi\)
0.427779 0.903884i \(-0.359296\pi\)
\(642\) −4108.38 + 7529.40i −0.252562 + 0.462869i
\(643\) −24076.1 −1.47662 −0.738310 0.674461i \(-0.764376\pi\)
−0.738310 + 0.674461i \(0.764376\pi\)
\(644\) 9621.02 + 8240.93i 0.588698 + 0.504252i
\(645\) 14024.0 11227.5i 0.856117 0.685399i
\(646\) 4479.65 1873.94i 0.272832 0.114132i
\(647\) −9606.99 −0.583755 −0.291878 0.956456i \(-0.594280\pi\)
−0.291878 + 0.956456i \(0.594280\pi\)
\(648\) 12098.5 11212.7i 0.733447 0.679746i
\(649\) 11714.1i 0.708500i
\(650\) 3778.11 1580.47i 0.227984 0.0953711i
\(651\) −15454.0 16749.0i −0.930398 1.00837i
\(652\) 23422.0 + 23096.0i 1.40686 + 1.38729i
\(653\) 5450.16 0.326618 0.163309 0.986575i \(-0.447783\pi\)
0.163309 + 0.986575i \(0.447783\pi\)
\(654\) 23947.7 + 13066.9i 1.43185 + 0.781281i
\(655\) 5821.08 0.347249
\(656\) 422.479 + 30146.8i 0.0251449 + 1.79426i
\(657\) −27356.6 6134.58i −1.62448 0.364281i
\(658\) −10173.1 + 5120.40i −0.602717 + 0.303364i
\(659\) −15534.8 −0.918287 −0.459144 0.888362i \(-0.651844\pi\)
−0.459144 + 0.888362i \(0.651844\pi\)
\(660\) −27111.4 2810.37i −1.59896 0.165748i
\(661\) −10381.1 −0.610858 −0.305429 0.952215i \(-0.598800\pi\)
−0.305429 + 0.952215i \(0.598800\pi\)
\(662\) 5700.24 + 13626.4i 0.334662 + 0.800006i
\(663\) −8088.55 + 6475.61i −0.473806 + 0.379324i
\(664\) −15531.9 6243.11i −0.907765 0.364879i
\(665\) −425.768 6063.39i −0.0248279 0.353576i
\(666\) 19658.0 3488.02i 1.14374 0.202940i
\(667\) 9541.36i 0.553888i
\(668\) 6880.59 6977.69i 0.398530 0.404154i
\(669\) 12783.7 + 15967.9i 0.738784 + 0.922799i
\(670\) −5635.46 + 2357.45i −0.324950 + 0.135934i
\(671\) 37367.6 2.14986
\(672\) −15938.9 7029.65i −0.914965 0.403534i
\(673\) 29748.6 1.70390 0.851948 0.523626i \(-0.175421\pi\)
0.851948 + 0.523626i \(0.175421\pi\)
\(674\) 7563.42 3163.96i 0.432244 0.180818i
\(675\) −3097.39 6339.02i −0.176620 0.361465i
\(676\) −7684.14 + 7792.58i −0.437195 + 0.443365i
\(677\) 6845.80i 0.388634i 0.980939 + 0.194317i \(0.0622491\pi\)
−0.980939 + 0.194317i \(0.937751\pi\)
\(678\) 12275.5 + 6698.08i 0.695337 + 0.379407i
\(679\) 237.552 + 3383.00i 0.0134262 + 0.191204i
\(680\) −19250.7 7737.89i −1.08563 0.436374i
\(681\) 20231.3 + 25270.4i 1.13842 + 1.42198i
\(682\) −12801.7 30602.4i −0.718772 1.71822i
\(683\) 13901.9 0.778833 0.389417 0.921062i \(-0.372677\pi\)
0.389417 + 0.921062i \(0.372677\pi\)
\(684\) 2897.57 + 4502.66i 0.161976 + 0.251701i
\(685\) 14919.5 0.832184
\(686\) −14762.8 + 10241.6i −0.821639 + 0.570008i
\(687\) −16119.2 + 12904.9i −0.895178 + 0.716671i
\(688\) 16710.9 234.187i 0.926011 0.0129772i
\(689\) −341.799 −0.0188991
\(690\) −7968.77 + 14604.3i −0.439661 + 0.805763i
\(691\) −7713.20 −0.424637 −0.212318 0.977201i \(-0.568101\pi\)
−0.212318 + 0.977201i \(0.568101\pi\)
\(692\) −13964.7 13770.3i −0.767134 0.756459i
\(693\) 3712.83 24484.9i 0.203519 1.34214i
\(694\) 27551.7 11525.5i 1.50699 0.630408i
\(695\) 32034.1i 1.74838i
\(696\) 3788.49 + 12561.9i 0.206325 + 0.684133i
\(697\) −32625.7 −1.77301
\(698\) 11337.1 4742.59i 0.614780 0.257177i
\(699\) 11044.9 + 13795.9i 0.597648 + 0.746509i
\(700\) −4847.03 + 5658.75i −0.261715 + 0.305544i
\(701\) −28716.9 −1.54725 −0.773626 0.633643i \(-0.781559\pi\)
−0.773626 + 0.633643i \(0.781559\pi\)
\(702\) −8588.97 7534.46i −0.461780 0.405085i
\(703\) 6480.69i 0.347687i
\(704\) −18302.9 17549.2i −0.979851 0.939501i
\(705\) −9347.95 11676.3i −0.499382 0.623767i
\(706\) −25621.5 + 10718.1i −1.36583 + 0.571361i
\(707\) −1112.95 15849.6i −0.0592033 0.843118i
\(708\) 9779.88 + 1013.78i 0.519139 + 0.0538139i
\(709\) 6971.08i 0.369259i 0.982808 + 0.184629i \(0.0591085\pi\)
−0.982808 + 0.184629i \(0.940892\pi\)
\(710\) 16524.9 6912.76i 0.873477 0.365396i
\(711\) −874.862 + 3901.38i −0.0461461 + 0.205785i
\(712\) 11374.2 28297.4i 0.598690 1.48945i
\(713\) −20247.6 −1.06350
\(714\) 7847.90 17139.6i 0.411345 0.898365i
\(715\) 18879.0i 0.987463i
\(716\) 5202.62 5276.04i 0.271552 0.275384i
\(717\) 14540.8 + 18162.6i 0.757371 + 0.946016i
\(718\) 795.664 + 1902.03i 0.0413565 + 0.0988623i
\(719\) 19292.8 1.00070 0.500348 0.865825i \(-0.333205\pi\)
0.500348 + 0.865825i \(0.333205\pi\)
\(720\) 4692.67 22391.7i 0.242896 1.15901i
\(721\) 640.519 + 9121.68i 0.0330849 + 0.471164i
\(722\) 16293.9 6816.13i 0.839884 0.351343i
\(723\) −7510.44 9381.13i −0.386329 0.482556i
\(724\) −4924.61 + 4994.10i −0.252792 + 0.256360i
\(725\) 5611.90 0.287477
\(726\) 7896.45 14471.8i 0.403671 0.739805i
\(727\) 12461.6i 0.635732i 0.948136 + 0.317866i \(0.102966\pi\)
−0.948136 + 0.317866i \(0.897034\pi\)
\(728\) −3704.76 + 11483.1i −0.188609 + 0.584604i
\(729\) −12095.7 + 15527.8i −0.614527 + 0.788896i
\(730\) −35872.1 + 15006.1i −1.81875 + 0.760825i
\(731\) 18085.0i 0.915045i
\(732\) −3233.94 + 31197.6i −0.163292 + 1.57527i
\(733\) 26437.4 1.33218 0.666090 0.745872i \(-0.267967\pi\)
0.666090 + 0.745872i \(0.267967\pi\)
\(734\) 8958.74 + 21415.8i 0.450508 + 1.07694i
\(735\) −17177.0 16179.0i −0.862017 0.811933i
\(736\) −14193.2 + 6172.44i −0.710826 + 0.309129i
\(737\) 8078.86i 0.403784i
\(738\) −6285.21 35422.6i −0.313498 1.76684i
\(739\) 24642.5i 1.22664i −0.789834 0.613321i \(-0.789833\pi\)
0.789834 0.613321i \(-0.210167\pi\)
\(740\) 19442.4 19716.7i 0.965832 0.979462i
\(741\) 2895.16 2317.84i 0.143531 0.114909i
\(742\) 555.456 279.577i 0.0274817 0.0138323i
\(743\) 29736.2i 1.46826i 0.679012 + 0.734128i \(0.262409\pi\)
−0.679012 + 0.734128i \(0.737591\pi\)
\(744\) 26657.3 8039.49i 1.31358 0.396158i
\(745\) 27135.2i 1.33444i
\(746\) 7226.52 + 17274.9i 0.354667 + 0.847829i
\(747\) 19490.5 + 4370.63i 0.954645 + 0.214074i
\(748\) 19266.0 19537.9i 0.941760 0.955050i
\(749\) −10782.1 + 757.115i −0.525995 + 0.0369351i
\(750\) 12761.4 + 6963.21i 0.621308 + 0.339014i
\(751\) 8068.95 0.392064 0.196032 0.980597i \(-0.437194\pi\)
0.196032 + 0.980597i \(0.437194\pi\)
\(752\) −194.983 13913.4i −0.00945519 0.674691i
\(753\) −14591.6 18226.0i −0.706171 0.882063i
\(754\) 8383.91 3507.19i 0.404939 0.169396i
\(755\) 3815.42i 0.183917i
\(756\) 20120.8 + 5218.81i 0.967970 + 0.251067i
\(757\) 10634.4i 0.510587i 0.966864 + 0.255293i \(0.0821720\pi\)
−0.966864 + 0.255293i \(0.917828\pi\)
\(758\) −3065.84 7328.87i −0.146908 0.351183i
\(759\) −13751.1 17176.3i −0.657622 0.821422i
\(760\) 6890.48 + 2769.65i 0.328873 + 0.132192i
\(761\) 3296.31 0.157019 0.0785094 0.996913i \(-0.474984\pi\)
0.0785094 + 0.996913i \(0.474984\pi\)
\(762\) 17955.2 32906.4i 0.853606 1.56440i
\(763\) 2408.05 + 34293.2i 0.114256 + 1.62712i
\(764\) −14107.4 13911.0i −0.668045 0.658748i
\(765\) 24157.1 + 5417.09i 1.14170 + 0.256020i
\(766\) −6250.21 + 2614.61i −0.294816 + 0.123329i
\(767\) 6810.22i 0.320603i
\(768\) 16235.5 13762.0i 0.762824 0.646606i
\(769\) 29295.6i 1.37376i −0.726769 0.686882i \(-0.758979\pi\)
0.726769 0.686882i \(-0.241021\pi\)
\(770\) −15442.2 30680.3i −0.722727 1.43590i
\(771\) 5808.53 4650.25i 0.271322 0.217218i
\(772\) 17584.2 17832.4i 0.819779 0.831348i
\(773\) 3337.03i 0.155271i 0.996982 + 0.0776356i \(0.0247371\pi\)
−0.996982 + 0.0776356i \(0.975263\pi\)
\(774\) −19635.4 + 3484.00i −0.911859 + 0.161795i
\(775\) 11908.9i 0.551975i
\(776\) −3844.47 1545.30i −0.177846 0.0714857i
\(777\) 17060.8 + 18490.5i 0.787712 + 0.853722i
\(778\) −31517.0 + 13184.3i −1.45237 + 0.607559i
\(779\) 11677.8 0.537102
\(780\) −15761.8 1633.87i −0.723543 0.0750024i
\(781\) 23689.7i 1.08538i
\(782\) −6463.48 15450.9i −0.295567 0.706551i
\(783\) −6873.36 14066.8i −0.313709 0.642025i
\(784\) −3372.07 21691.5i −0.153611 0.988131i
\(785\) 27650.7i 1.25719i
\(786\) −5672.33 3095.08i −0.257411 0.140455i
\(787\) 643.131 0.0291298 0.0145649 0.999894i \(-0.495364\pi\)
0.0145649 + 0.999894i \(0.495364\pi\)
\(788\) 479.963 486.736i 0.0216979 0.0220041i
\(789\) −2931.25 3661.37i −0.132263 0.165207i
\(790\) 2140.05 + 5115.77i 0.0963792 + 0.230394i
\(791\) 1234.36 + 17578.6i 0.0554851 + 0.790168i
\(792\) 24924.4 + 17153.8i 1.11824 + 0.769611i
\(793\) 21724.5 0.972835
\(794\) −13673.4 + 5719.91i −0.611147 + 0.255657i
\(795\) 510.403 + 637.534i 0.0227700 + 0.0284415i
\(796\) −20146.5 19866.2i −0.897079 0.884595i
\(797\) 12470.7i 0.554248i −0.960834 0.277124i \(-0.910619\pi\)
0.960834 0.277124i \(-0.0893813\pi\)
\(798\) −2809.03 + 6134.83i −0.124610 + 0.272144i
\(799\) 15057.5 0.666702
\(800\) −3630.42 8347.94i −0.160443 0.368930i
\(801\) −7962.79 + 35509.4i −0.351250 + 1.56637i
\(802\) −11624.7 27788.7i −0.511823 1.22351i
\(803\) 51425.4i 2.25998i
\(804\) 6744.91 + 699.177i 0.295864 + 0.0306693i
\(805\) −20913.4 + 1468.53i −0.915654 + 0.0642967i
\(806\) −7442.54 17791.3i −0.325251 0.777510i
\(807\) 6136.81 + 7665.36i 0.267690 + 0.334366i
\(808\) 18011.6 + 7239.81i 0.784214 + 0.315217i
\(809\) 36823.8i 1.60032i 0.599789 + 0.800158i \(0.295251\pi\)
−0.599789 + 0.800158i \(0.704749\pi\)
\(810\) −1227.72 + 27271.5i −0.0532566 + 1.18299i
\(811\) 28331.7 1.22671 0.613354 0.789808i \(-0.289820\pi\)
0.613354 + 0.789808i \(0.289820\pi\)
\(812\) −10755.9 + 12557.2i −0.464851 + 0.542699i
\(813\) −24748.6 30913.0i −1.06762 1.33354i
\(814\) 14132.7 + 33784.2i 0.608541 + 1.45471i
\(815\) −54438.2 −2.33974
\(816\) 14644.6 + 17775.8i 0.628262 + 0.762595i
\(817\) 6473.23i 0.277196i
\(818\) 11131.0 + 26608.5i 0.475776 + 1.13734i
\(819\) 2158.53 14234.8i 0.0920944 0.607333i
\(820\) −35528.5 35034.1i −1.51306 1.49200i
\(821\) −24314.1 −1.03358 −0.516789 0.856113i \(-0.672873\pi\)
−0.516789 + 0.856113i \(0.672873\pi\)
\(822\) −14538.3 7932.75i −0.616888 0.336602i
\(823\) −7780.71 −0.329549 −0.164774 0.986331i \(-0.552690\pi\)
−0.164774 + 0.986331i \(0.552690\pi\)
\(824\) −10365.9 4166.63i −0.438246 0.176154i
\(825\) 10102.5 8087.95i 0.426331 0.341317i
\(826\) 5570.47 + 11067.3i 0.234651 + 0.466198i
\(827\) 9658.38 0.406112 0.203056 0.979167i \(-0.434913\pi\)
0.203056 + 0.979167i \(0.434913\pi\)
\(828\) 15530.3 9994.12i 0.651829 0.419468i
\(829\) −4178.46 −0.175059 −0.0875296 0.996162i \(-0.527897\pi\)
−0.0875296 + 0.996162i \(0.527897\pi\)
\(830\) 25557.4 10691.3i 1.06881 0.447107i
\(831\) −9689.81 12103.3i −0.404496 0.505247i
\(832\) −10640.8 10202.6i −0.443392 0.425133i
\(833\) 23521.7 3319.73i 0.978365 0.138081i
\(834\) −17032.6 + 31215.5i −0.707182 + 1.29605i
\(835\) 16217.8i 0.672144i
\(836\) −6895.96 + 6993.28i −0.285289 + 0.289315i
\(837\) −29850.8 + 14585.8i −1.23273 + 0.602342i
\(838\) 10263.5 + 24534.8i 0.423086 + 1.01138i
\(839\) −937.651 −0.0385832 −0.0192916 0.999814i \(-0.506141\pi\)
−0.0192916 + 0.999814i \(0.506141\pi\)
\(840\) 26950.9 10237.3i 1.10702 0.420500i
\(841\) −11935.8 −0.489391
\(842\) 1664.76 + 3979.60i 0.0681371 + 0.162881i
\(843\) 9706.04 + 12123.6i 0.396552 + 0.495325i
\(844\) −9661.88 9527.43i −0.394047 0.388563i
\(845\) 18111.8i 0.737354i
\(846\) 2900.75 + 16348.3i 0.117884 + 0.664380i
\(847\) 20723.6 1455.20i 0.840700 0.0590335i
\(848\) 10.6462 + 759.677i 0.000431122 + 0.0307635i
\(849\) −12781.5 + 10232.7i −0.516678 + 0.413647i
\(850\) 9087.68 3801.59i 0.366711 0.153404i
\(851\) 22352.8 0.900403
\(852\) −19778.2 2050.20i −0.795292 0.0824399i
\(853\) 5791.89 0.232486 0.116243 0.993221i \(-0.462915\pi\)
0.116243 + 0.993221i \(0.462915\pi\)
\(854\) −35304.3 + 17769.7i −1.41462 + 0.712021i
\(855\) −8646.62 1938.96i −0.345857 0.0775566i
\(856\) 4925.09 12252.9i 0.196654 0.489246i
\(857\) 1880.84 0.0749687 0.0374843 0.999297i \(-0.488066\pi\)
0.0374843 + 0.999297i \(0.488066\pi\)
\(858\) 10038.0 18396.6i 0.399408 0.731993i
\(859\) −9503.79 −0.377491 −0.188746 0.982026i \(-0.560442\pi\)
−0.188746 + 0.982026i \(0.560442\pi\)
\(860\) −19420.0 + 19694.0i −0.770018 + 0.780885i
\(861\) 33318.8 30742.6i 1.31882 1.21685i
\(862\) −8535.51 20404.1i −0.337263 0.806224i
\(863\) 5322.63i 0.209947i 0.994475 + 0.104974i \(0.0334758\pi\)
−0.994475 + 0.104974i \(0.966524\pi\)
\(864\) −16478.5 + 19324.4i −0.648853 + 0.760914i
\(865\) 32457.2 1.27581
\(866\) 12276.1 + 29345.9i 0.481707 + 1.15152i
\(867\) 473.011 378.688i 0.0185286 0.0148338i
\(868\) 26647.4 + 22825.0i 1.04202 + 0.892546i
\(869\) −7333.85 −0.286288
\(870\) −19061.3 10400.7i −0.742803 0.405307i
\(871\) 4696.82i 0.182716i
\(872\) −38971.0 15664.5i −1.51345 0.608335i
\(873\) 4824.29 + 1081.82i 0.187030 + 0.0419405i
\(874\) 2313.49 + 5530.39i 0.0895368 + 0.214037i
\(875\) 1283.22 + 18274.4i 0.0495779 + 0.706043i
\(876\) 42934.2 + 4450.56i 1.65595 + 0.171656i
\(877\) 15099.1i 0.581369i −0.956819 0.290684i \(-0.906117\pi\)
0.956819 0.290684i \(-0.0938829\pi\)
\(878\) −6439.67 15394.0i −0.247526 0.591710i
\(879\) −5312.79 6636.09i −0.203863 0.254641i
\(880\) 41960.3 588.036i 1.60737 0.0225258i
\(881\) 25460.6 0.973654 0.486827 0.873498i \(-0.338154\pi\)
0.486827 + 0.873498i \(0.338154\pi\)
\(882\) 8135.67 + 24898.6i 0.310592 + 0.950543i
\(883\) 29492.7i 1.12402i 0.827131 + 0.562009i \(0.189972\pi\)
−0.827131 + 0.562009i \(0.810028\pi\)
\(884\) 11200.7 11358.8i 0.426155 0.432169i
\(885\) −12702.6 + 10169.6i −0.482480 + 0.386269i
\(886\) −2587.94 + 1082.60i −0.0981305 + 0.0410504i
\(887\) −11558.8 −0.437550 −0.218775 0.975775i \(-0.570206\pi\)
−0.218775 + 0.975775i \(0.570206\pi\)
\(888\) −29429.0 + 8875.38i −1.11213 + 0.335403i
\(889\) 47122.0 3308.88i 1.77775 0.124833i
\(890\) 19478.2 + 46562.6i 0.733609 + 1.75369i
\(891\) −32646.6 15416.9i −1.22750 0.579669i
\(892\) −22423.7 22111.7i −0.841707 0.829994i
\(893\) −5389.57 −0.201965
\(894\) 14427.8 26441.8i 0.539753 0.989202i
\(895\) 12262.8i 0.457987i
\(896\) 25637.6 + 7876.49i 0.955905 + 0.293677i
\(897\) −7994.53 9985.80i −0.297580 0.371701i
\(898\) 15204.8 + 36347.0i 0.565024 + 1.35069i
\(899\) 26426.8i 0.980403i
\(900\) 5878.19 + 9134.37i 0.217711 + 0.338310i
\(901\) −822.146 −0.0303992
\(902\) 60877.2 25466.4i 2.24722 0.940065i
\(903\) −17041.1 18469.2i −0.628010 0.680637i
\(904\) −19976.4 8029.60i −0.734963 0.295421i
\(905\) 11607.5i 0.426348i
\(906\) 2028.66 3717.92i 0.0743906 0.136335i
\(907\) 10190.2i 0.373053i −0.982450 0.186527i \(-0.940277\pi\)
0.982450 0.186527i \(-0.0597231\pi\)
\(908\) −35487.4 34993.6i −1.29702 1.27897i
\(909\) −22602.1 5068.40i −0.824713 0.184937i
\(910\) −8977.68 17836.6i −0.327041 0.649757i
\(911\) 33432.8i 1.21589i −0.793978 0.607947i \(-0.791993\pi\)
0.793978 0.607947i \(-0.208007\pi\)
\(912\) −5241.78 6362.56i −0.190321 0.231015i
\(913\) 36638.5i 1.32810i
\(914\) 26106.7 10921.1i 0.944784 0.395226i
\(915\) −32440.8 40521.2i −1.17209 1.46403i
\(916\) 22321.3 22636.3i 0.805151 0.816513i
\(917\) −570.378 8122.80i −0.0205404 0.292517i
\(918\) −20659.5 18123.0i −0.742772 0.651578i
\(919\) −38879.2 −1.39554 −0.697772 0.716320i \(-0.745825\pi\)
−0.697772 + 0.716320i \(0.745825\pi\)
\(920\) 9552.89 23766.2i 0.342336 0.851682i
\(921\) −15367.5 + 12303.1i −0.549812 + 0.440174i
\(922\) 16991.9 + 40619.0i 0.606940 + 1.45088i
\(923\) 13772.5i 0.491146i
\(924\) −1265.11 + 38107.0i −0.0450422 + 1.35674i
\(925\) 13147.1i 0.467324i
\(926\) 28353.7 11861.0i 1.00622 0.420926i
\(927\) 13007.9 + 2916.94i 0.460878 + 0.103349i
\(928\) −8056.17 18524.7i −0.284975 0.655285i
\(929\) 19916.3 0.703370 0.351685 0.936118i \(-0.385609\pi\)
0.351685 + 0.936118i \(0.385609\pi\)
\(930\) −22071.2 + 40449.7i −0.778217 + 1.42623i
\(931\) −8419.20 + 1188.24i −0.296378 + 0.0418293i
\(932\) −19373.7 19104.1i −0.680908 0.671433i
\(933\) 20275.1 16232.1i 0.711444 0.569575i
\(934\) −2383.97 5698.86i −0.0835180 0.199649i
\(935\) 45410.7i 1.58833i
\(936\) 14490.3 + 9972.71i 0.506016 + 0.348257i
\(937\) 27614.4i 0.962779i −0.876507 0.481390i \(-0.840132\pi\)
0.876507 0.481390i \(-0.159868\pi\)
\(938\) 3841.80 + 7632.78i 0.133730 + 0.265692i
\(939\) −3743.19 4675.54i −0.130090 0.162492i
\(940\) 16397.1 + 16169.0i 0.568953 + 0.561035i
\(941\) 33189.4i 1.14978i 0.818231 + 0.574890i \(0.194955\pi\)
−0.818231 + 0.574890i \(0.805045\pi\)
\(942\) −14702.0 + 26944.2i −0.508509 + 0.931942i
\(943\) 40278.4i 1.39093i
\(944\) −15136.3 + 212.122i −0.521870 + 0.00731353i
\(945\) −29774.6 + 17230.5i −1.02494 + 0.593132i
\(946\) −14116.5 33745.3i −0.485164 1.15978i
\(947\) −6141.76 −0.210750 −0.105375 0.994433i \(-0.533604\pi\)
−0.105375 + 0.994433i \(0.533604\pi\)
\(948\) 634.702 6122.92i 0.0217449 0.209771i
\(949\) 29897.2i 1.02266i
\(950\) −3252.78 + 1360.72i −0.111089 + 0.0464710i
\(951\) 11109.5 8894.16i 0.378812 0.303273i
\(952\) −8911.26 + 27620.9i −0.303378 + 0.940333i
\(953\) 7097.85i 0.241261i 0.992697 + 0.120631i \(0.0384916\pi\)
−0.992697 + 0.120631i \(0.961508\pi\)
\(954\) −158.383 892.626i −0.00537509 0.0302933i
\(955\) 32788.8 1.11102
\(956\) −25505.8 25150.9i −0.862883 0.850876i
\(957\) 22418.2 17947.8i 0.757239 0.606238i
\(958\) −18339.4 + 7671.82i −0.618497 + 0.258732i
\(959\) −1461.89 20818.9i −0.0492252 0.701019i
\(960\) −3140.47 + 35082.9i −0.105582 + 1.17947i
\(961\) −26288.8 −0.882441
\(962\) 8216.37 + 19641.2i 0.275371 + 0.658271i
\(963\) −3447.92 + 15375.7i −0.115377 + 0.514513i
\(964\) 13174.0 + 12990.6i 0.440151 + 0.434026i
\(965\) 41446.6i 1.38260i
\(966\) 21159.8 + 9688.71i 0.704769 + 0.322701i
\(967\) 10526.5 0.350063 0.175031 0.984563i \(-0.443997\pi\)
0.175031 + 0.984563i \(0.443997\pi\)
\(968\) −9466.20 + 23550.5i −0.314313 + 0.781964i
\(969\) 6963.89 5575.22i 0.230869 0.184832i
\(970\) 6325.96 2646.30i 0.209396 0.0875955i
\(971\) 10918.3i 0.360848i −0.983589 0.180424i \(-0.942253\pi\)
0.983589 0.180424i \(-0.0577470\pi\)
\(972\) 15696.7 25921.9i 0.517975 0.855396i
\(973\) −44700.7 + 3138.86i −1.47280 + 0.103419i
\(974\) −9305.75 + 3892.82i −0.306135 + 0.128064i
\(975\) 5873.30 4702.10i 0.192919 0.154449i
\(976\) −676.663 48284.5i −0.0221921 1.58355i
\(977\) 23312.8i 0.763400i −0.924286 0.381700i \(-0.875339\pi\)
0.924286 0.381700i \(-0.124661\pi\)
\(978\) 53047.1 + 28944.9i 1.73442 + 0.946376i
\(979\) −66751.0 −2.17913
\(980\) 29179.2 + 21642.9i 0.951118 + 0.705466i
\(981\) 48903.4 + 10966.3i 1.59160 + 0.356909i
\(982\) 5823.26 2436.01i 0.189234 0.0791611i
\(983\) −17319.7 −0.561965 −0.280982 0.959713i \(-0.590660\pi\)
−0.280982 + 0.959713i \(0.590660\pi\)
\(984\) 15992.9 + 53029.4i 0.518126 + 1.71800i
\(985\) 1131.29i 0.0365948i
\(986\) 20166.3 8436.03i 0.651343 0.272472i
\(987\) −15377.3 + 14188.3i −0.495912 + 0.457568i
\(988\) −4009.12 + 4065.69i −0.129096 + 0.130918i
\(989\) −22327.0 −0.717854
\(990\) −49303.6 + 8748.18i −1.58280 + 0.280844i
\(991\) 20423.3 0.654660 0.327330 0.944910i \(-0.393851\pi\)
0.327330 + 0.944910i \(0.393851\pi\)
\(992\) −39311.0 + 17095.9i −1.25819 + 0.547172i
\(993\) 16958.9 + 21183.0i 0.541969 + 0.676962i
\(994\) −11265.3 22381.7i −0.359472 0.714189i
\(995\) 46825.2 1.49192
\(996\) −30588.9 3170.84i −0.973138 0.100875i
\(997\) 47651.1 1.51367 0.756833 0.653608i \(-0.226745\pi\)
0.756833 + 0.653608i \(0.226745\pi\)
\(998\) 22561.1 + 53932.2i 0.715591 + 1.71061i
\(999\) 32954.5 16102.4i 1.04368 0.509966i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 168.4.i.c.125.11 yes 80
3.2 odd 2 inner 168.4.i.c.125.69 yes 80
4.3 odd 2 672.4.i.c.209.62 80
7.6 odd 2 inner 168.4.i.c.125.12 yes 80
8.3 odd 2 672.4.i.c.209.19 80
8.5 even 2 inner 168.4.i.c.125.72 yes 80
12.11 even 2 672.4.i.c.209.63 80
21.20 even 2 inner 168.4.i.c.125.70 yes 80
24.5 odd 2 inner 168.4.i.c.125.10 yes 80
24.11 even 2 672.4.i.c.209.18 80
28.27 even 2 672.4.i.c.209.20 80
56.13 odd 2 inner 168.4.i.c.125.71 yes 80
56.27 even 2 672.4.i.c.209.61 80
84.83 odd 2 672.4.i.c.209.17 80
168.83 odd 2 672.4.i.c.209.64 80
168.125 even 2 inner 168.4.i.c.125.9 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.9 80 168.125 even 2 inner
168.4.i.c.125.10 yes 80 24.5 odd 2 inner
168.4.i.c.125.11 yes 80 1.1 even 1 trivial
168.4.i.c.125.12 yes 80 7.6 odd 2 inner
168.4.i.c.125.69 yes 80 3.2 odd 2 inner
168.4.i.c.125.70 yes 80 21.20 even 2 inner
168.4.i.c.125.71 yes 80 56.13 odd 2 inner
168.4.i.c.125.72 yes 80 8.5 even 2 inner
672.4.i.c.209.17 80 84.83 odd 2
672.4.i.c.209.18 80 24.11 even 2
672.4.i.c.209.19 80 8.3 odd 2
672.4.i.c.209.20 80 28.27 even 2
672.4.i.c.209.61 80 56.27 even 2
672.4.i.c.209.62 80 4.3 odd 2
672.4.i.c.209.63 80 12.11 even 2
672.4.i.c.209.64 80 168.83 odd 2