L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−1.40 − 1.40i)5-s + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)8-s − 1.98i·10-s + (−0.369 + 0.369i)11-s + (3.37 − 1.27i)13-s − 1.00i·14-s − 1.00·16-s − 0.875·17-s + (−2.06 + 2.06i)19-s + (1.40 − 1.40i)20-s − 0.522·22-s − 5.51·23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.626 − 0.626i)5-s + (−0.267 − 0.267i)7-s + (−0.250 + 0.250i)8-s − 0.626i·10-s + (−0.111 + 0.111i)11-s + (0.934 − 0.354i)13-s − 0.267i·14-s − 0.250·16-s − 0.212·17-s + (−0.474 + 0.474i)19-s + (0.313 − 0.313i)20-s − 0.111·22-s − 1.15·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0413 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0413 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.080711712\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.080711712\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-3.37 + 1.27i)T \) |
good | 5 | \( 1 + (1.40 + 1.40i)T + 5iT^{2} \) |
| 11 | \( 1 + (0.369 - 0.369i)T - 11iT^{2} \) |
| 17 | \( 1 + 0.875T + 17T^{2} \) |
| 19 | \( 1 + (2.06 - 2.06i)T - 19iT^{2} \) |
| 23 | \( 1 + 5.51T + 23T^{2} \) |
| 29 | \( 1 + 4.89iT - 29T^{2} \) |
| 31 | \( 1 + (-3.42 + 3.42i)T - 31iT^{2} \) |
| 37 | \( 1 + (7.52 + 7.52i)T + 37iT^{2} \) |
| 41 | \( 1 + (3.86 + 3.86i)T + 41iT^{2} \) |
| 43 | \( 1 + 1.96iT - 43T^{2} \) |
| 47 | \( 1 + (2.05 - 2.05i)T - 47iT^{2} \) |
| 53 | \( 1 + 11.4iT - 53T^{2} \) |
| 59 | \( 1 + (1.44 - 1.44i)T - 59iT^{2} \) |
| 61 | \( 1 + 2.82T + 61T^{2} \) |
| 67 | \( 1 + (-8.98 + 8.98i)T - 67iT^{2} \) |
| 71 | \( 1 + (8.80 + 8.80i)T + 71iT^{2} \) |
| 73 | \( 1 + (-8.70 - 8.70i)T + 73iT^{2} \) |
| 79 | \( 1 - 8.87T + 79T^{2} \) |
| 83 | \( 1 + (2.45 + 2.45i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5.38 + 5.38i)T - 89iT^{2} \) |
| 97 | \( 1 + (-2.17 + 2.17i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.928856291419638798801807635574, −8.194153646336959644785826481598, −7.75649373881224662482847955864, −6.63136796635676663420076449806, −5.98839130865403623242303822803, −5.04438315183126156281721132460, −4.05992487785609004371055654642, −3.61279108793213914085276547632, −2.09601049686161425837239503601, −0.34492926941067450622393791157,
1.53330570761089241761289320841, 2.83291557628842597875143343634, 3.54323815899997512720463531480, 4.40246985165215642202273184856, 5.41351449288544394825181205733, 6.44061413840324875197948328227, 6.89617069405304183705604560145, 8.107081790583664904280239143388, 8.764026786467882115351111295310, 9.709952116194645506386898167464