L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−3.00 − 3.00i)5-s + (0.707 + 0.707i)7-s + (0.707 − 0.707i)8-s + 4.24i·10-s + (2.53 − 2.53i)11-s + (2.84 − 2.21i)13-s − 1.00i·14-s − 1.00·16-s − 7.16·17-s + (4.75 − 4.75i)19-s + (3.00 − 3.00i)20-s − 3.58·22-s + 5.70·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−1.34 − 1.34i)5-s + (0.267 + 0.267i)7-s + (0.250 − 0.250i)8-s + 1.34i·10-s + (0.764 − 0.764i)11-s + (0.789 − 0.614i)13-s − 0.267i·14-s − 0.250·16-s − 1.73·17-s + (1.09 − 1.09i)19-s + (0.671 − 0.671i)20-s − 0.764·22-s + 1.19·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 6.47e-5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 6.47e-5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7715641164\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7715641164\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + (-2.84 + 2.21i)T \) |
good | 5 | \( 1 + (3.00 + 3.00i)T + 5iT^{2} \) |
| 11 | \( 1 + (-2.53 + 2.53i)T - 11iT^{2} \) |
| 17 | \( 1 + 7.16T + 17T^{2} \) |
| 19 | \( 1 + (-4.75 + 4.75i)T - 19iT^{2} \) |
| 23 | \( 1 - 5.70T + 23T^{2} \) |
| 29 | \( 1 + 3.76iT - 29T^{2} \) |
| 31 | \( 1 + (-0.0835 + 0.0835i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.86 + 1.86i)T + 37iT^{2} \) |
| 41 | \( 1 + (-3.47 - 3.47i)T + 41iT^{2} \) |
| 43 | \( 1 + 7.91iT - 43T^{2} \) |
| 47 | \( 1 + (-1.55 + 1.55i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.22iT - 53T^{2} \) |
| 59 | \( 1 + (4.33 - 4.33i)T - 59iT^{2} \) |
| 61 | \( 1 + 12.2T + 61T^{2} \) |
| 67 | \( 1 + (-0.568 + 0.568i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.61 - 8.61i)T + 71iT^{2} \) |
| 73 | \( 1 + (3.94 + 3.94i)T + 73iT^{2} \) |
| 79 | \( 1 + 9.08T + 79T^{2} \) |
| 83 | \( 1 + (8.23 + 8.23i)T + 83iT^{2} \) |
| 89 | \( 1 + (8.69 - 8.69i)T - 89iT^{2} \) |
| 97 | \( 1 + (9.42 - 9.42i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.813154154118419061905338604877, −8.567579305129671570296814867961, −7.64918130482585391187718866210, −6.81970259339629045111716160468, −5.51688393225731214854779333105, −4.60995993261278464770365454710, −3.90309144909945061911658096648, −2.93174928961311721243690034804, −1.28481871482097173357654994138, −0.41228866206535740133007443464,
1.48541455408877624499990467511, 2.97141060849006173983771870954, 3.98683604049831958318621522597, 4.61712089163367173400740147386, 6.13557628331457380071410615119, 6.89897983418804214520335209121, 7.21900062594693097388310236414, 8.061756953058845987340822812256, 8.881707873925824893130121653816, 9.658647370008836971786101577147