Properties

Label 2-161-1.1-c3-0-27
Degree $2$
Conductor $161$
Sign $-1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.02·2-s − 9.11·3-s + 1.15·4-s + 18.5·5-s − 27.5·6-s − 7·7-s − 20.7·8-s + 56.1·9-s + 56.2·10-s − 33.2·11-s − 10.5·12-s − 64.4·13-s − 21.1·14-s − 169.·15-s − 71.9·16-s − 52.2·17-s + 169.·18-s − 88.3·19-s + 21.4·20-s + 63.8·21-s − 100.·22-s + 23·23-s + 188.·24-s + 220.·25-s − 194.·26-s − 265.·27-s − 8.09·28-s + ⋯
L(s)  = 1  + 1.06·2-s − 1.75·3-s + 0.144·4-s + 1.66·5-s − 1.87·6-s − 0.377·7-s − 0.915·8-s + 2.07·9-s + 1.77·10-s − 0.911·11-s − 0.253·12-s − 1.37·13-s − 0.404·14-s − 2.91·15-s − 1.12·16-s − 0.745·17-s + 2.22·18-s − 1.06·19-s + 0.240·20-s + 0.663·21-s − 0.975·22-s + 0.208·23-s + 1.60·24-s + 1.76·25-s − 1.47·26-s − 1.89·27-s − 0.0546·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 3.02T + 8T^{2} \)
3 \( 1 + 9.11T + 27T^{2} \)
5 \( 1 - 18.5T + 125T^{2} \)
11 \( 1 + 33.2T + 1.33e3T^{2} \)
13 \( 1 + 64.4T + 2.19e3T^{2} \)
17 \( 1 + 52.2T + 4.91e3T^{2} \)
19 \( 1 + 88.3T + 6.85e3T^{2} \)
29 \( 1 - 118.T + 2.43e4T^{2} \)
31 \( 1 + 255.T + 2.97e4T^{2} \)
37 \( 1 - 57.9T + 5.06e4T^{2} \)
41 \( 1 + 347.T + 6.89e4T^{2} \)
43 \( 1 - 477.T + 7.95e4T^{2} \)
47 \( 1 - 239.T + 1.03e5T^{2} \)
53 \( 1 + 402.T + 1.48e5T^{2} \)
59 \( 1 + 587.T + 2.05e5T^{2} \)
61 \( 1 - 698.T + 2.26e5T^{2} \)
67 \( 1 - 126.T + 3.00e5T^{2} \)
71 \( 1 + 844.T + 3.57e5T^{2} \)
73 \( 1 - 712.T + 3.89e5T^{2} \)
79 \( 1 + 589.T + 4.93e5T^{2} \)
83 \( 1 - 1.00e3T + 5.71e5T^{2} \)
89 \( 1 - 35.6T + 7.04e5T^{2} \)
97 \( 1 + 127.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.36779701803946198772121460556, −10.95878906675814876029539210825, −10.17857757923759894550916070589, −9.250117571399743459187752888331, −6.90317378099379792089855723016, −6.06476488342851272780645922565, −5.33723112631325888815282099394, −4.61984609749904430370905339166, −2.35850675215200380312117848542, 0, 2.35850675215200380312117848542, 4.61984609749904430370905339166, 5.33723112631325888815282099394, 6.06476488342851272780645922565, 6.90317378099379792089855723016, 9.250117571399743459187752888331, 10.17857757923759894550916070589, 10.95878906675814876029539210825, 12.36779701803946198772121460556

Graph of the $Z$-function along the critical line