| L(s) = 1 | + (−1.36 + 0.375i)2-s + (1.22 + 0.508i)3-s + (1.71 − 1.02i)4-s + (0.868 + 2.06i)5-s + (−1.86 − 0.231i)6-s + 0.810·7-s + (−1.95 + 2.04i)8-s + (−0.874 − 0.874i)9-s + (−1.95 − 2.48i)10-s + (0.353 − 0.853i)11-s + (2.62 − 0.384i)12-s + (3.86 + 1.60i)13-s + (−1.10 + 0.304i)14-s + (0.0190 + 2.96i)15-s + (1.89 − 3.52i)16-s + (−4.37 + 4.37i)17-s + ⋯ |
| L(s) = 1 | + (−0.964 + 0.265i)2-s + (0.708 + 0.293i)3-s + (0.858 − 0.512i)4-s + (0.388 + 0.921i)5-s + (−0.760 − 0.0945i)6-s + 0.306·7-s + (−0.691 + 0.722i)8-s + (−0.291 − 0.291i)9-s + (−0.619 − 0.784i)10-s + (0.106 − 0.257i)11-s + (0.758 − 0.111i)12-s + (1.07 + 0.444i)13-s + (−0.295 + 0.0814i)14-s + (0.00490 + 0.766i)15-s + (0.474 − 0.880i)16-s + (−1.06 + 1.06i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.603 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.892393 + 0.444025i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.892393 + 0.444025i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.36 - 0.375i)T \) |
| 5 | \( 1 + (-0.868 - 2.06i)T \) |
| good | 3 | \( 1 + (-1.22 - 0.508i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 - 0.810T + 7T^{2} \) |
| 11 | \( 1 + (-0.353 + 0.853i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (-3.86 - 1.60i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + (4.37 - 4.37i)T - 17iT^{2} \) |
| 19 | \( 1 + (-0.285 - 0.690i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 - 5.36T + 23T^{2} \) |
| 29 | \( 1 + (1.48 + 3.58i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + 9.06iT - 31T^{2} \) |
| 37 | \( 1 + (0.870 - 0.360i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.572 + 0.572i)T - 41iT^{2} \) |
| 43 | \( 1 + (4.42 + 10.6i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (1.59 + 1.59i)T + 47iT^{2} \) |
| 53 | \( 1 + (4.62 - 1.91i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-0.996 + 2.40i)T + (-41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.76 + 2.38i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (-2.34 + 5.66i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (1.22 - 1.22i)T - 71iT^{2} \) |
| 73 | \( 1 - 11.4iT - 73T^{2} \) |
| 79 | \( 1 - 17.0iT - 79T^{2} \) |
| 83 | \( 1 + (-3.28 + 7.93i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-7.65 + 7.65i)T - 89iT^{2} \) |
| 97 | \( 1 + (2.02 + 2.02i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32848055522511358826802151535, −11.46286127401078477823052998811, −10.95964439419094182200875701517, −9.813063179779628958313178667646, −8.905551346525765663127700509147, −8.135263480873766791468098793987, −6.74775984876694768206552572667, −5.92893017312638572178992922757, −3.63550900697258175856470295588, −2.14929834962259121933265969352,
1.50986204065286639155935427582, 3.01961856392922436421458065183, 5.02852558693968935585083019891, 6.67917495360681531432729076208, 7.928359545879539337868083183360, 8.766891070100187433714892937576, 9.286726640112562176027424026834, 10.71438358386221252014503183409, 11.55219000609980390208813065687, 12.86077427979801705338707058448