| L(s) = 1 | + (−1.36 − 0.375i)2-s + (1.22 − 0.508i)3-s + (1.71 + 1.02i)4-s + (0.868 − 2.06i)5-s + (−1.86 + 0.231i)6-s + 0.810·7-s + (−1.95 − 2.04i)8-s + (−0.874 + 0.874i)9-s + (−1.95 + 2.48i)10-s + (0.353 + 0.853i)11-s + (2.62 + 0.384i)12-s + (3.86 − 1.60i)13-s + (−1.10 − 0.304i)14-s + (0.0190 − 2.96i)15-s + (1.89 + 3.52i)16-s + (−4.37 − 4.37i)17-s + ⋯ |
| L(s) = 1 | + (−0.964 − 0.265i)2-s + (0.708 − 0.293i)3-s + (0.858 + 0.512i)4-s + (0.388 − 0.921i)5-s + (−0.760 + 0.0945i)6-s + 0.306·7-s + (−0.691 − 0.722i)8-s + (−0.291 + 0.291i)9-s + (−0.619 + 0.784i)10-s + (0.106 + 0.257i)11-s + (0.758 + 0.111i)12-s + (1.07 − 0.444i)13-s + (−0.295 − 0.0814i)14-s + (0.00490 − 0.766i)15-s + (0.474 + 0.880i)16-s + (−1.06 − 1.06i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.603 + 0.797i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.603 + 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.892393 - 0.444025i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.892393 - 0.444025i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.36 + 0.375i)T \) |
| 5 | \( 1 + (-0.868 + 2.06i)T \) |
| good | 3 | \( 1 + (-1.22 + 0.508i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 - 0.810T + 7T^{2} \) |
| 11 | \( 1 + (-0.353 - 0.853i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-3.86 + 1.60i)T + (9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 + (4.37 + 4.37i)T + 17iT^{2} \) |
| 19 | \( 1 + (-0.285 + 0.690i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 - 5.36T + 23T^{2} \) |
| 29 | \( 1 + (1.48 - 3.58i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 - 9.06iT - 31T^{2} \) |
| 37 | \( 1 + (0.870 + 0.360i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.572 - 0.572i)T + 41iT^{2} \) |
| 43 | \( 1 + (4.42 - 10.6i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (1.59 - 1.59i)T - 47iT^{2} \) |
| 53 | \( 1 + (4.62 + 1.91i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-0.996 - 2.40i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-5.76 - 2.38i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-2.34 - 5.66i)T + (-47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (1.22 + 1.22i)T + 71iT^{2} \) |
| 73 | \( 1 + 11.4iT - 73T^{2} \) |
| 79 | \( 1 + 17.0iT - 79T^{2} \) |
| 83 | \( 1 + (-3.28 - 7.93i)T + (-58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-7.65 - 7.65i)T + 89iT^{2} \) |
| 97 | \( 1 + (2.02 - 2.02i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86077427979801705338707058448, −11.55219000609980390208813065687, −10.71438358386221252014503183409, −9.286726640112562176027424026834, −8.766891070100187433714892937576, −7.928359545879539337868083183360, −6.67917495360681531432729076208, −5.02852558693968935585083019891, −3.01961856392922436421458065183, −1.50986204065286639155935427582,
2.14929834962259121933265969352, 3.63550900697258175856470295588, 5.92893017312638572178992922757, 6.74775984876694768206552572667, 8.135263480873766791468098793987, 8.905551346525765663127700509147, 9.813063179779628958313178667646, 10.95964439419094182200875701517, 11.46286127401078477823052998811, 13.32848055522511358826802151535