L(s) = 1 | + 7.07i·5-s + 14.2i·7-s + (−36.4 + 1.29i)11-s − 78.5i·13-s + 15.8·17-s + 32.0i·19-s + 114. i·23-s + 75·25-s + 114.·29-s − 129.·31-s − 100.·35-s − 301.·37-s − 287.·41-s − 105. i·43-s − 240. i·47-s + ⋯ |
L(s) = 1 | + 0.632i·5-s + 0.768i·7-s + (−0.999 + 0.0354i)11-s − 1.67i·13-s + 0.226·17-s + 0.386i·19-s + 1.03i·23-s + 0.599·25-s + 0.732·29-s − 0.747·31-s − 0.485·35-s − 1.34·37-s − 1.09·41-s − 0.373i·43-s − 0.746i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.281419452\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.281419452\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (36.4 - 1.29i)T \) |
good | 5 | \( 1 - 7.07iT - 125T^{2} \) |
| 7 | \( 1 - 14.2iT - 343T^{2} \) |
| 13 | \( 1 + 78.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 15.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 32.0iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 114. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 114.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 129.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 301.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 287.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 105. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 240. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 320. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 600. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 398. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 260T + 3.00e5T^{2} \) |
| 71 | \( 1 - 672. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 1.14e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 899. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 531.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.19e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 404.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.803498467643617992951103141661, −8.123257375875529237973861839852, −7.43218114065963936438068526138, −6.51572407204397282118293538978, −5.34722126345025048119155340662, −5.27995730102269773515419821812, −3.49848608694700097849450065210, −2.96643102865031711709677636882, −1.90746687134987415547704344010, −0.33821957057162126981939201281,
0.868205271215803731438003474297, 1.98285334386829952390424308470, 3.16614058657274622918266973248, 4.41441298266278010317996526979, 4.76469844697835542992600190685, 5.91553393228579587117424130698, 6.93051739152085611459304140586, 7.43397404650735651616603502216, 8.637804850431080407123911048962, 8.909606149783335439463782765234