Properties

Label 1584.4.b.g
Level $1584$
Weight $4$
Character orbit 1584.b
Analytic conductor $93.459$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,4,Mod(593,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.593"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1584.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(93.4590254491\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12261951429820416.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 62x^{6} + 1113x^{4} + 5786x^{2} + 5776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 5 \beta_{5} q^{5} + ( - \beta_{6} - \beta_{4}) q^{7} + (\beta_{7} - 12 \beta_{5} - 3 \beta_{2}) q^{11} + ( - \beta_{6} + 8 \beta_{4}) q^{13} + ( - \beta_{2} - 11 \beta_1) q^{17} + (5 \beta_{6} - 5 \beta_{4}) q^{19}+ \cdots + (30 \beta_{3} + 1100) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 600 q^{25} + 80 q^{31} - 560 q^{37} + 1496 q^{49} - 1000 q^{55} - 2080 q^{67} + 2640 q^{91} + 8800 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 62x^{6} + 1113x^{4} + 5786x^{2} + 5776 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -34\nu^{6} - 2036\nu^{4} - 31896\nu^{2} - 84504 ) / 4631 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{6} - 190\nu^{4} - 2118\nu^{2} - 4642 ) / 421 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{6} - 190\nu^{4} - 1276\nu^{2} + 8409 ) / 421 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 25\nu^{7} + 1398\nu^{5} + 20605\nu^{3} + 128158\nu ) / 31996 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -25\nu^{7} - 1398\nu^{5} - 20605\nu^{3} - 64166\nu ) / 31996 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -72\nu^{7} - 5946\nu^{5} - 158530\nu^{3} - 1289300\nu ) / 87989 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 223\nu^{7} - 152\nu^{6} + 13750\nu^{5} - 7220\nu^{4} + 228591\nu^{3} - 80484\nu^{2} + 754098\nu - 176396 ) / 31996 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - \beta_{2} - 31 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -6\beta_{7} - 11\beta_{6} - 94\beta_{5} - 52\beta_{4} + 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -33\beta_{3} + 50\beta_{2} - 22\beta _1 + 809 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 310\beta_{7} + 385\beta_{6} + 3898\beta_{5} + 1536\beta_{4} - 155\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 1038\beta_{3} - 2056\beta_{2} + 1045\beta _1 - 24334 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -12390\beta_{7} - 12463\beta_{6} - 150754\beta_{5} - 48168\beta_{4} + 6195\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
5.86333i
1.14042i
2.55464i
4.44912i
4.44912i
2.55464i
1.14042i
5.86333i
0 0 0 7.07107i 0 14.2249i 0 0 0
593.2 0 0 0 7.07107i 0 10.4716i 0 0 0
593.3 0 0 0 7.07107i 0 10.4716i 0 0 0
593.4 0 0 0 7.07107i 0 14.2249i 0 0 0
593.5 0 0 0 7.07107i 0 14.2249i 0 0 0
593.6 0 0 0 7.07107i 0 10.4716i 0 0 0
593.7 0 0 0 7.07107i 0 10.4716i 0 0 0
593.8 0 0 0 7.07107i 0 14.2249i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1584.4.b.g 8
3.b odd 2 1 inner 1584.4.b.g 8
4.b odd 2 1 99.4.d.c 8
11.b odd 2 1 inner 1584.4.b.g 8
12.b even 2 1 99.4.d.c 8
33.d even 2 1 inner 1584.4.b.g 8
44.c even 2 1 99.4.d.c 8
132.d odd 2 1 99.4.d.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.4.d.c 8 4.b odd 2 1
99.4.d.c 8 12.b even 2 1
99.4.d.c 8 44.c even 2 1
99.4.d.c 8 132.d odd 2 1
1584.4.b.g 8 1.a even 1 1 trivial
1584.4.b.g 8 3.b odd 2 1 inner
1584.4.b.g 8 11.b odd 2 1 inner
1584.4.b.g 8 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1584, [\chi])\):

\( T_{5}^{2} + 50 \) Copy content Toggle raw display
\( T_{17}^{4} - 13572T_{17}^{2} + 3345408 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 50)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 312 T^{2} + 22188)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots + 3138428376721 \) Copy content Toggle raw display
$13$ \( (T^{4} + 8088 T^{2} + 11808768)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 13572 T^{2} + 3345408)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 9000 T^{2} + 8167500)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 58600 T^{2} + 595360000)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 28500 T^{2} + 201720000)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 20 T - 19232)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 140 T - 48800)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 112500 T^{2} + 2453880000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 77688 T^{2} + 738151788)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 57800)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + 214900 T^{2} + 11524022500)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 507016 T^{2} + 52804363264)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 530400 T^{2} + 58968120000)^{2} \) Copy content Toggle raw display
$67$ \( (T + 260)^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} + 452944 T^{2} + 136235584)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 1936008 T^{2} + 816399986688)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 1811400 T^{2} + 811044007500)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 316368 T^{2} + 9548295168)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 1418452 T^{2} + 176199076)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 2200 T + 726700)^{4} \) Copy content Toggle raw display
show more
show less