Properties

Label 2-1584-33.32-c3-0-39
Degree $2$
Conductor $1584$
Sign $0.555 - 0.831i$
Analytic cond. $93.4590$
Root an. cond. $9.66742$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.07i·5-s + 10.4i·7-s + (13.0 + 34.0i)11-s + 43.7i·13-s + 115.·17-s − 89.3i·19-s − 213. i·23-s + 75·25-s + 124.·29-s + 149.·31-s − 74.0·35-s + 161.·37-s − 172.·41-s − 258. i·43-s − 240. i·47-s + ⋯
L(s)  = 1  + 0.632i·5-s + 0.565i·7-s + (0.358 + 0.933i)11-s + 0.932i·13-s + 1.64·17-s − 1.07i·19-s − 1.93i·23-s + 0.599·25-s + 0.794·29-s + 0.863·31-s − 0.357·35-s + 0.718·37-s − 0.655·41-s − 0.915i·43-s − 0.746i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.555 - 0.831i$
Analytic conductor: \(93.4590\)
Root analytic conductor: \(9.66742\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (593, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :3/2),\ 0.555 - 0.831i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.546336738\)
\(L(\frac12)\) \(\approx\) \(2.546336738\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-13.0 - 34.0i)T \)
good5 \( 1 - 7.07iT - 125T^{2} \)
7 \( 1 - 10.4iT - 343T^{2} \)
13 \( 1 - 43.7iT - 2.19e3T^{2} \)
17 \( 1 - 115.T + 4.91e3T^{2} \)
19 \( 1 + 89.3iT - 6.85e3T^{2} \)
23 \( 1 + 213. iT - 1.21e4T^{2} \)
29 \( 1 - 124.T + 2.43e4T^{2} \)
31 \( 1 - 149.T + 2.97e4T^{2} \)
37 \( 1 - 161.T + 5.06e4T^{2} \)
41 \( 1 + 172.T + 6.89e4T^{2} \)
43 \( 1 + 258. iT - 7.95e4T^{2} \)
47 \( 1 + 240. iT - 1.03e5T^{2} \)
53 \( 1 - 334. iT - 1.48e5T^{2} \)
59 \( 1 - 382. iT - 2.05e5T^{2} \)
61 \( 1 - 609. iT - 2.26e5T^{2} \)
67 \( 1 + 260T + 3.00e5T^{2} \)
71 \( 1 - 17.3iT - 3.57e5T^{2} \)
73 \( 1 + 787. iT - 3.89e5T^{2} \)
79 \( 1 - 1.00e3iT - 4.93e5T^{2} \)
83 \( 1 + 183.T + 5.71e5T^{2} \)
89 \( 1 - 11.1iT - 7.04e5T^{2} \)
97 \( 1 - 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.086624767140493844719379845515, −8.545247277947802341266240103948, −7.39854162391626484666222642441, −6.80024034954095760913214434472, −6.09387102051267705251542586449, −4.93826437507328443519211176221, −4.24660107194989409281476504479, −2.95907924462993947802819148264, −2.27729605181723478609908773447, −0.918506323632207175822646229596, 0.77879254464508489980220055189, 1.35127696561955395342231340934, 3.13976128509321437329012400558, 3.64899542400803887921154792300, 4.89012979637530647090508295432, 5.63652958011587168603149718664, 6.34443684272346681802755634981, 7.68926443225916733508694377822, 7.954626759113567988768682692640, 8.874283926317798732086318410932

Graph of the $Z$-function along the critical line