Properties

Label 2-1584-33.32-c3-0-27
Degree $2$
Conductor $1584$
Sign $0.969 + 0.246i$
Analytic cond. $93.4590$
Root an. cond. $9.66742$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.07i·5-s + 10.4i·7-s + (−13.0 − 34.0i)11-s + 43.7i·13-s − 115.·17-s − 89.3i·19-s + 213. i·23-s + 75·25-s − 124.·29-s + 149.·31-s + 74.0·35-s + 161.·37-s + 172.·41-s − 258. i·43-s + 240. i·47-s + ⋯
L(s)  = 1  − 0.632i·5-s + 0.565i·7-s + (−0.358 − 0.933i)11-s + 0.932i·13-s − 1.64·17-s − 1.07i·19-s + 1.93i·23-s + 0.599·25-s − 0.794·29-s + 0.863·31-s + 0.357·35-s + 0.718·37-s + 0.655·41-s − 0.915i·43-s + 0.746i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.969 + 0.246i$
Analytic conductor: \(93.4590\)
Root analytic conductor: \(9.66742\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (593, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :3/2),\ 0.969 + 0.246i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.718515400\)
\(L(\frac12)\) \(\approx\) \(1.718515400\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (13.0 + 34.0i)T \)
good5 \( 1 + 7.07iT - 125T^{2} \)
7 \( 1 - 10.4iT - 343T^{2} \)
13 \( 1 - 43.7iT - 2.19e3T^{2} \)
17 \( 1 + 115.T + 4.91e3T^{2} \)
19 \( 1 + 89.3iT - 6.85e3T^{2} \)
23 \( 1 - 213. iT - 1.21e4T^{2} \)
29 \( 1 + 124.T + 2.43e4T^{2} \)
31 \( 1 - 149.T + 2.97e4T^{2} \)
37 \( 1 - 161.T + 5.06e4T^{2} \)
41 \( 1 - 172.T + 6.89e4T^{2} \)
43 \( 1 + 258. iT - 7.95e4T^{2} \)
47 \( 1 - 240. iT - 1.03e5T^{2} \)
53 \( 1 + 334. iT - 1.48e5T^{2} \)
59 \( 1 + 382. iT - 2.05e5T^{2} \)
61 \( 1 - 609. iT - 2.26e5T^{2} \)
67 \( 1 + 260T + 3.00e5T^{2} \)
71 \( 1 + 17.3iT - 3.57e5T^{2} \)
73 \( 1 + 787. iT - 3.89e5T^{2} \)
79 \( 1 - 1.00e3iT - 4.93e5T^{2} \)
83 \( 1 - 183.T + 5.71e5T^{2} \)
89 \( 1 + 11.1iT - 7.04e5T^{2} \)
97 \( 1 - 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.077743843440358776491332436373, −8.450617945296208377846163080350, −7.42833818355870176968839211687, −6.56585485677975620620591576338, −5.70035566774127100299343282197, −4.90374976619862200202948958789, −4.06793423149993843509718488141, −2.86622465931618096063060486825, −1.89566026897872690270131315116, −0.60447644684343254246441405314, 0.63554898169851134851581969337, 2.13568900946397547578514621308, 2.90932818050755766942528050050, 4.15855984448352421447694970400, 4.74756168587889741598493034118, 6.00961407847923718738913192784, 6.70005258389111488071565589962, 7.46050267577995346182218642942, 8.188105509248620345716001955493, 9.079158339672723122498262116233

Graph of the $Z$-function along the critical line