L(s) = 1 | − 6.78·5-s + 11.7i·7-s + (−6.78 + 8.66i)11-s + 11.7i·13-s + 10.3i·17-s − 33.9·23-s + 21·25-s + 34.6i·29-s + 10·31-s − 79.6i·35-s + 50·37-s − 34.6i·41-s + 46.9i·43-s − 33.9·47-s − 89·49-s + ⋯ |
L(s) = 1 | − 1.35·5-s + 1.67i·7-s + (−0.616 + 0.787i)11-s + 0.903i·13-s + 0.611i·17-s − 1.47·23-s + 0.839·25-s + 1.19i·29-s + 0.322·31-s − 2.27i·35-s + 1.35·37-s − 0.844i·41-s + 1.09i·43-s − 0.721·47-s − 1.81·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.616 + 0.787i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.616 + 0.787i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4728595184\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4728595184\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (6.78 - 8.66i)T \) |
good | 5 | \( 1 + 6.78T + 25T^{2} \) |
| 7 | \( 1 - 11.7iT - 49T^{2} \) |
| 13 | \( 1 - 11.7iT - 169T^{2} \) |
| 17 | \( 1 - 10.3iT - 289T^{2} \) |
| 19 | \( 1 - 361T^{2} \) |
| 23 | \( 1 + 33.9T + 529T^{2} \) |
| 29 | \( 1 - 34.6iT - 841T^{2} \) |
| 31 | \( 1 - 10T + 961T^{2} \) |
| 37 | \( 1 - 50T + 1.36e3T^{2} \) |
| 41 | \( 1 + 34.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 46.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 33.9T + 2.20e3T^{2} \) |
| 53 | \( 1 - 33.9T + 2.80e3T^{2} \) |
| 59 | \( 1 - 67.8T + 3.48e3T^{2} \) |
| 61 | \( 1 - 58.7iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 10T + 4.48e3T^{2} \) |
| 71 | \( 1 + 33.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + 70.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 58.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 76.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 13.5T + 7.92e3T^{2} \) |
| 97 | \( 1 + 40T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.617170994520761940981610925364, −8.815622348199451123948587365047, −8.177534753037816536533881488108, −7.52984898018128454631676757001, −6.52222060977461033086087388386, −5.65545538322395702947532639663, −4.68665697572246842618821827288, −3.93125664083351406403768538474, −2.76948288249763653066338182431, −1.83748197423531470724096595870,
0.17698556383080154100946903666, 0.811317755460173935030079859033, 2.74738814200861517206068709666, 3.79695086864446487547396536760, 4.19432044466619980352137708493, 5.31463430324262192977849964239, 6.42907841737676781632103113458, 7.36225803092415391382363889809, 8.013255772049822142200395390298, 8.208467164416395514515995748195